

ATMOS FORTH
Programming Manual

Original Material by: Andy Biggs
Edited by: Paul Kaufman

WARNING

Copyright exists on all Tansoft Products. The product may not be
copied, lent or re-sold in any format without the express permission of
Tansoft Limited. Tansoft will pursue vigorously to the full extent of
the law any case where this permission has not been granted.

ORIC—-FORTH

Contents

Introduction

1.

e o B W N

The Source Tape

The Four{th}) Fundamentals

Getting Going with some Examples

Editing and Creating Source Programs

An example Program — a PRINT UTILITY

Forth Dictionary Structure

The Code Field and What it Does

Creating Machine Code Words

Appendices:

A,
B.
C.

ERROR MESSAGES
USER VARIABLE TABLE

SAVING AN APPLICATION
PROGRAM

CONTENTS OF CASSETTE

ASSEMBLER

The Full Glossary of Instructions, and Overview

© Copyright 1984 Tansoft Limited,

Page

15
19
25
29
34

37
39

40
42
43

53

INTRODUCTION

FORTH was created by Mr. Charles H. Moore in 1969 at the National
Radio Astronomy Observatory, Charlottesville, Virginia, USA. [t was
created out of dissatisfaction with available programming tools,
especially for observatory automation.

Mr. Moore and several associates formed FORTH Inc., in 1973 for the
purpose of licensing and support of the FORTH operating system and
Programming Language, and to supply application programming to
meet customers requirements.

This version of FORTH is that issued by the Forth Interest Group {FIG)
which is centred in northern California. The group was formed in
1978 by FORTH programmers to encourage use of the language, and
interchange of ideas through seminars and publications.

FIG issue a language model, and code implementations for a number of
processor types, the publications being in the public domain; however,
each requires customisation to a particular target system. Customised
installations are the property of the customiser, who then holds copy-
right for his/her particular version.

This handbook does not set out to be an exhaustive text-book on the
language, merely an introduction to its use, and a general description
of the internal workings. Users seeking further information of FORTH
may like to consider joining the Forth Interest Group, whose address
is: P.O. Box 1105, San Carlos, California 94070, U.S.A.

FIG hold a number of books, some of which may be purchased in
this country through bookshops, and they should be happy to send you
a membership form/publications list.

A good book now available is ‘Starting FORTH'’, by Leo Brodie,
published by Prentice-Hall; though this is based on polyFORTH?®,
which has some differences to figFORTH.

*polyFORTH is a trademark of FORTH Inc.

The Source Tape

Thankyou for purchasing this Forth package for you Atmos computer
system. We hope you will get both pleasure and an improved knowledge
of programming techniques out of this unusual language

The first thing to do is to load the Forth pioyram inw your Atmos,
Note that all this is done simply by entering: CLOAD “FORTH",
the files on the distribution tape have been recorded at the fast speed.
Forth will take about 4 minutes to be read in.

Once the program has been loaded you can enter Forth by typing CALL
#400 {Return). If you accidentally fall back into Basic {(for example, by
pressing the Resetbutton) you can re-start Forth without losing all your
work with: CALL #404 (Return)

On entering Forth you will be greeted with the message: ORIC—FORTH
V2 OK. You should then enter the command: EMPTY -BUFFERS
(Return). This command initialises the cassette buffers {(explained later
on). Failing to do this may result in 1/0 being blocked.

If you now type VLIST, Forth will list out every command {or word)
that it can understand, Control-C will stop it for you.

Also try the following: 2 3 * . (Return) Putting a space between each
item. The answer 6 should be printed to the right of the dot. What you
have done is to give the Forth interpreter two numbers, 2 and 3. These
are pushed onto the stack as they were entered. The * {multiply)
operator then multiplies these two stack entries replacing them with the
answer on the top of the stack. Finally the command ‘.’ {Dot) takes the
number on the top of the stack and prints it on the screen.

If you now type {. CR }i.e. the instructions inside the curly brackets
you will get the error message "EMPTY STACK" since there should be
nothing there to print.

Cassette 1/0O

FORTH is designed to work with disc memory for bulk storage, where
the disc is handled to provide virtual memory. This means that the disc
looks as though it is an extension of normal memory. The FORTH
method is to imagine the disc as consisting of 1K byte blocks numbered
from O to N, the capacity of a disc. If the user requests that BLOCK 3
is to be ‘used’, then this block of 1K is fetched from the disc into a buffer
in RAM. [If the RAM buffer already contains another block from disc,
then the RAM buffer is written back to disc before the new block is
fetched. (Actually it is only written back if it has been modified).

In this simple manner, the whole of the disc is accessible in a direct
manner, quick and simple to use. |If the user requests a block it appears
in the buffer. The fetch/rewrite operations are automatic, and are carried
out by a group of FORTH Words collectively known as the Forth Virtual
Disc Manager.

These 1K byte blocks are also known as SCREENS because they can
be displayed (on normal VDU) as one screen full, 16 rows of G4
characters. This is not quite true for the Oric Atmos!

Atmos Cassette Adaption

To allow a similar system with cassette which neither sacrifices the speed
and flexibility of this mechanism, nor makes this version of FORTH in-
compatible with a future update to disc, the following method has been
used.

A 9K byte block of RAM™ has been reserved as a ‘micro-disc’. The nor-
mal disc manager routines pretend this 9K block is a disc and they fetch/
update 128 byte sectors of the normal disc buffer.

The cassette commands now load, and save the 9K microdisc in units of

1K SCREENS, which can be manipulated by Forth in the usual way,
with no restriction on whether they contain source text, data, or what-
ever the user wishes.

Cassette Commands

CLOAD loads 1K Screens from tape to the ‘micro-disc’ buffers. The
start and end screen number must be on the stack, for example:

1 3 CLOAD<CR>> loads screens 1, 2 and 3 from tape,
1 3 CSAVE similary dumps them.

SPEED is a variable to control the tape speed.

Storing O here sets FAST

Storing 1 here sets SLOW

For example:- 0 SPEED ! {CR) sets fast

Note that CLOAD, CSAVE, and SPEED are like all FORTH commands
and can be invoked either from the keyboard, or from within a program.

Verify is not included because if errors are found, a return to Basic
would be forced — thus crashing Forth.

The full contents of the cassette are listed in the appendix.

* Oric Forth V1 only allowed 7K. The extra two screens usable with this version
should be avoided if you need the HIRES mode.

Chapter 2

The Four(th} Fundamentals

These are as follows:

* The two stacks
* Post-fix notation
* The Dictionary

* Virtual Memory

Before getting to grips with the language it is essential to have a grasp
of each of the above ideas. If you have used a Hewlett-Packard calcu-

lator, the first two items will be familiar.

The Stacks

FORTH maintains two push down stacks of numbers — last in, first
out type. These may be pictured as a vertical spring loaded rack., As
you push a new item into therack, you push down all the existing items
that are in it, putting the new one on the top. Taking the top item off
then lets all the others ‘POP UP’ to reveal the next item available.

This is illustrated in Fig 1. It is very important to notice that the most
RECENT item added is the FIRST one out again,

TOP PUSH DOWN POPUP POP UP

N TOP-OF- STACK
4|
KR
-

Start Pushanew Remove Remove
iten one item one item

Fig. 1. A push-down stack

Because of the way most microprocessors and computers work, inside
the machine memory, the stacks usually work ‘upside down’ to this
description; that is new items are added/removed from the low end of

the stack, as shown in Fig 2.
Hi Memory Address

MNotice how the pointer
E 5 > u-rrmaitnindicntelhe

4 4 4 currfnl "top-of- the-
Y e e e
| [w |
Start Push POP POP

Fig. 2.

Which way up you wish to visualise the stacks does not really matter;
most people visualise them as in Fig 1.

The Return Stack

This is the conventional subroutine return stack, and for the 6502 it
occupies the address range @1FF down to @100 (hex). FORTH stores
linkage information here in the usual way, and also some other items
from time to time. The processor stack pointer S does the work of the
pointer > shown in Fig 2. This stack will always be referred to by its
full name ‘the return stack’.

The Parameter Stack

All calculations and operations, are carried out upon items in place at
or near the top of this stack. The items are nearly always 16 bit integers,
though double precision (32 bit) numbers may also be used. Manipula-
tion of single bytes takes place as 16 bit integers with the unused high
bits held at zero.

For example, the operator + adds two integers together. It removes the
top two numbers from the stack, adds them, and returns ONE 16 bit
integer to the stack as the answer,

It is possible to transfer numbers from one stack to the other, {with
care), and to manipulate the relative positions of the top 3 or 4 items,

The parameter stack occupies most of the zero page and uses the pro-
cessor X register as the stack pointer.

Postfix Notation

This is the concept of supplying an arithmetic operator AFTER the para-
meters. It is most easily seen with a simple arithmetic example.

Consider the following two statements:-
3+2= Algebraic notation
32+ Postfix
The first is the ‘normal’ way, the second one reads as follows:

Reading from left to right, FORTH first encounters the 3. This, like
all explicit numbers, is pushed onto the stack. Likewise the next item,
the 2. The next thing is + which FORTH interprets as follows:

‘Take the top two numbers from the stack, add them, and return the
answer to the stack’,

This is much quicker than the algebraic form, where the line must be
scanned beyond the operator (+ in this example) to ensure that all the
variabies or arguments have been located,

The Postfix notation requires that the arguments exist {on the stack)
before the operation isinvoked,

Try this example: 3 2 + 4 7 + * which yields 55. See the illustra-
tion of the stacks below.

) }3?
|2 |4
}

3 2 + 4 7 + =

[5]653
1

)

DN o

Notice how the intermediate products 5 and 11 are left on the stack
and appear ready for the multiply operator without any intervention,

In normal (algebraic) fashion, this would have been written
(3+2) * (447} =

Note also how the postfix version did not require brackets, This is be-
cause the order in which the operations take place is fixed only by the
order in which YOU present them, NOT by some arbitrary rules of
priority.

I hope you can now see how the postfix idea falls in perfectly with a
stack operating machine, and how it increases the efficiencey and
throughput of the program. It may surprise you that many languages
are actually postfix ‘inside’ and they spend much code and time in
converting from algebraic notation and back again for the supposed
‘convenience’ of the user. FORTRAN compilers fall into this category.

The use of a stack also means less named variables for storing interme-
diate results, or for passing arguments between routines, Arguments for
routines are passed on the stack, of course. Named variables and con-
stants can be created if required, but in general, the fewer the better.

The Dictionary

FORTH is a language composed almost entirely of subroutine-like pro-
cedures. When a procedure is executed, a return address is pushed onto
the return stack and removed as the procedure exits.

In FORTH the procedures are called ‘Words’ (and what else is a language
composed of?}, and each Word has a distinct NAME of up to 31 ASCII
characters {excluding ‘space’, CR or LF or NULL).

The collection of Words which compose the language is the
DICTIONARY, arranged in the form of a linked list.

When a Word is used, the dictionary is searched from the top {most
recent) end to find the required word. What is “found’ is the start
address of the Word. Once found, the Word is either executed, if in
execution mode, or compiled, if in compile mode. Either way, the start
address is all that is required for either of these.

The file FORTH contains around 25@ Words, some of them machine
language primitives, most of them writtenin FORTH. Yes thelanguage is
written in itself.

The whole concept of FORTH programming is to build new Words
which consist of a sequence of calls to existing Words. This sequence of
calls then takes place when the new Word is executed.

Of course this new Word can then in turn be called by further new
Words, thus building up the complexity of what each procedure {Word)
can do until finally, one Word invokes your entire application.

Each new Word is linked into the dictionary, such that it is indistin-
guishable in structure from the rest of the language.

The act of programming literally extends the language (dictionary}, to
generate a new, extended dictionary of words which can carry out
yvour desired function.

It is possible to save the new extended dictionary asa new version of the
language which can be loaded and run directly. That is, you have the
capability to create different FORTH's, for specific applications,

The subject of the dictionary and its structure will be covered in more
detail later on.

Virtual Memory

ORIC—FORTH implements a very simple disc operating system
emulated in RAM, which views the disc as consisting of numbered
blocks, each block being 1K bytes regardless of actual disc sector size.
The blocks are numbered from @ up to the capacity of the disc.

If the user wishes to access block 'n’, a simple operation brings that
block into a buffer in RAM memory, where it can be manipulated. f
the block is altered in any way, the updated version will be rewritten to
disc automatically, (if it has been altered).

This simple scheme means that the whole of the disc can be ‘addressed’
as though it were memory, the address consisting of two parts:

The Block number
The byte address (@ to 1823} within the block

Chapter 3

Getting Going — Some Simple Examples

Assuming you have loaded FORTH, and got the 'OK’ prompt, then first
type EMPTY—BUFFERS <CR > to initialise the /O buffers. ALWAYS
DO THIS after a cold start unless you have some specific reason for not

doing so.
1.

Typing in response to ‘OK’,

The system is in terminal input mode, and is waiting for key-
board input as indicated by the presence of the cursor. Any-
thing you type in is initially stored in a Terminal Input Buffer
(TIB), 80 characters long. MNothing really happens until you
type carriage return << CR > . If you try to enter more than
80 characters, the input routine ‘closes’ the input with a
< CR > for you. After typing <CR >, the FORTH outer
interpreter starts to work its way along the input line (as
stored).

The interpreter looks for groups of characters, separated by
spaces:

*If it finds a FORTH word, that word is ‘executed’.

*If it finds a number, that number is pushed on to the stack.
*If it cannot recognise what you have entered, it aborts back
to input mode, displaying a ‘?' and the thing which it did not
like.

Simple Arithmetic

If youenter 2 3 + , <CR> then what yougetis5 OK
What happened? The ‘2" and’3" were pushed on to the stack.
‘+' means ‘add the two top stack entries together, and leave
the answer on top’. Finally "." means ‘print the top of stack
as a number”’,

Try: 4 5 + 6 7 + * . Should give 117 OK

Number Bases

Forth can work in different number bases, and can change at
any time - you can use it as an OCTAL/DECIMAL/HEX/
BINARY calculator. At cold start, FORTH starts in
DECIMAL. Typing HEX <<CR >>changes it to a hexadecimal
machine. DECIMAL <CR > changes it back again.

In the following, bold type shows what you typed (termin-
ated by <CR >); FORTH always finishes with OK to show
it has finished the current set of ‘commands’ and is ready for
more.

HEX OK
3BE8 C8 +. 3CBO OK (hex addition)
25 2F * , 6CB OK (hex multiplication)

DECIMAL 1348 HEX . 544 OK (decimal to hex)

Base changes occur by storing the relevant value in variable
BASE, so

8 BASE ! OK (stores 8 which means
OCTAL)

6 3 * .22 OK {(octal multiplication)

22 DECIMAL . 18 OK (octal back to decimal)

Adding a New Word to the Dictionary

So far everything you have typed has been executed im-
mediately after typing <<CR >. In order to add a new word
to the dictionary, FORTH must change to COMPILE mode
s0 that the right things are compiled into the dictionary list
rather than executed,

Suppose we wish to create a word which takes a number
from the top of the stack and returns the CUBE of that
number, we can try this from the terminal first.

2 DUPDUP* * 8 OK

Explanation: ‘2’ goes on the stack, DUP DUP makes two
extra copies (3 altogether}, * ™ multiplies all these together,
leaving the CUBE on the stack, for “." to print. To make this
a part of the dictionary, type as follows:

: CUBE DUP DUP * * , <TCR >0K and then

5 CUBE . 125 OK

If you type VLIST (CR) and Control C, you will see that
CUBE is now at the top of the dictionary, and can be used
like any other FORTH word. This is the result of the colon
.... semicolon pair which define a new Word to be compiled.

: abed means ‘this is a new Word called abed’. The Forth
words which then follow are compiled into the dictionary
under the name ‘abed’. Finally the ‘;" means ‘this is the end
of the new Word’. Remembering that 8 BASE ! sets OCTAL
number base, we could now go

: OCTAL 8 BASE ! ; OK to define an operator which will
set OCTAL number base if you type OCTAL < CR >,
Similarly you could have

: BINARY 2 BASE ! ; OK

A DO LOOP

This is a simple loop with a counting index, {a bit like a FOR
..NEXT loop in BASIC).

DO takes two variables from the stack; the initial value of
the loop counter is on top, and the final value +1 is next one
down on the stack.

Example: {‘lI’ returns the value of the loop counter)
DECIMAL CK

: 10—-CUBES (PRINT ATABLE OF CUBES
@ TO9)

10 9 DO {set up the loop end and
start)

CR I .1 CUBE . (print 8 number and its cube)

LOOP CR (end of the loop, print a
carriage return)

: OK {end of new WORD)}

now we can execute the new word
1¢—CUBES <CR >

@ D

1 1
2 8
3 27
4 64
5 125
6 216
7 343
8 512
9 729
The 1F ... ELSE ENDIF conditional (or IF ...

ELSE THEN)
‘IF’ looks at the top-of-stack (and removes it).

It interprets this value to be either false (= @) or true {non-
zero}, and executes the appropriate part of the conditional
statement as follows:

-10-

IF ... execute this part if true ENDIF otherwise come
to here

T

test value here

}
IF true partELSE false part ENDIF continue here

{note ‘THEN" is an alias for ENDIF)

So here is an example which returns the absolute value of the

top-of-stack number. Note ‘@ <<’ is a test of top-of-stack
which leaves a ‘true’ if the top-ofstack is less than zero

i.e, negative,

: ABS—VALUE
DUP B < {copy the number, test its sign)
IF MINUS ENDIF {change sign if negative)

; {end of this word)
and then try it

10 ABS —VALUE .18 OK

-5 ABS—VALUE . 50K

The BEGIN UNTIL LOOP

This loop takes a truth value as its argument, usually computed
within the loop, which is tested by UNTIL . If this is false,
the program loops back to BEGIN . If it is true, the pro-
gram continues past the UNTIL to the following instruction.

Example

- 1@CUBES {(name of this word)

L) (initial count value)
BEGIN (start of loop)

CR DUP , DUP CUBE .{print a number and its cube)
1+ (increment the index)
DUP 18 = {test for index = 10)
UNTIL (end of loop, exit if true)
CR DROP (throw away final index)
: OK (end of word)

18CUBES now execute it

@ @

1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

oK

-11-

8

TEXT INPUT and OUTPUT

Outputting text strings will generally use the word TYPE for
internally generated strings, or . " FRED" to generate ‘fred’,
which was a string literal. Subsidiary operators for text
output include;

—TRAILING

EMIT

SPACE

SPACES

and ERASE, FILL, BLANKS, for presetting string storage
areas,

Note that in FORTH, all strings are stored with their length
in the first byte — so maximum length is 255 characters.

Inputting text streams makes use of QUERY, EXPECT, and
the EDITOR word TEXT which moves input strings to the
buffer area which starts at PAD.

Comparison of strings can be done using the Editor words
TEXT and MATCH.

NUMBER INPUT/OUTPUT

All number 1/O takes place in the current BASE, so ensure
this is correct when programming number 1/O,

The principle numeric input werd is called NUMBER, which
takes a string of characters at a given address and tries to con-
vert them to a double precision integer.

When you type 123 <<CR >, it is the NUMBER word which
converts thestring 1" 2" 3" tobinary and puts it on the
stack. Note that 123 <CR > generates a single-precision
{16 bit) number.

If you type 123. <<CR >, the NUMBER routine recog-
nises the decimal point as a request for this to be double
precision {32 bit) integer.

MNote that 1.23 will also be converted as 123, but variable DPL
will hold 2 to indicate 2 decimal places were found on the
input conversion,

In order to make number input a bit easier, a new word IN#
exists on cassette extensionscreen 1, which does all the
necessary things to getsingle precision numbers from the key-
board and put the result on the stack.

12-

Number Output

To output a number, it has to be turned into a string. The
operators *." ‘.R" 'D.” and '‘D.R’do this for you for normal
output. These use formatting/conversion operators which are
available to you for special conversions., These operators are;

<# #S # HOLD SIGN # >

You should note that output number conversion takes
place RIGHT TO LEFT.
* These primitives always work on double-precision input
values.
* The string for printing is generated DOWNWARDS from
PAD. The following example demonstrates some of the
features you can do — it takes a 16 bit integer from the stack
and prints it as hours : minutes : seconds

First we need a word which inserts the : character into the
string.

HEX : " 3A HOLD ; DECIMAL

This defines the new word ;' which will do the trick., (Hex
$3A is the : character)

Next, an operator to convert in units of 60 (for seconds and
minutes).

: (00 # 6 BASE ! # ':" DECIMAL :

So word 0@ goes as follows:

converts the least significant digit in base 10
6 BASE ! sets BASE 6

converts the next digit in base 6

‘" inserts the : symbol

and finally DECIMAL is restored

and finally

: TIME @ <3#:00 :00 # # #> TYPE SPACE ;

13-

TIME expects the value for output on the stack, [taddsa @
to the stack to make a double precision number.

< #indicates '‘start of number conversion routine’’

:@0 converts the least significant part of this number to a
string in base 60 (for the seconds)

;3@ again does the minutes
converts two more digits {in decimal) for the hours

#> says ‘end of conversion
TYPE then types the resulting string
So 65 TIME < CR >>would print @@:@1:05

Note that # #S SIGN HOLD can only be used between the
<4 and #> symbols

Conclusions

By now, if you type VLIST, you will find you have added a few new
words to the dictionary. You could do one of two things — you could
FORGET them, to free up the space in memory, or, if this was an
application program, you could re-set the boot-up parameters to re-
member the new words as a permanent part of FORTH, and save the
whole new dictionary as a new version of the language. (More on this
in an appendix},

Chapter 4
Editing and Creating Source Programs

Having seen how you can give commands to FORTH, and create new
words, let's now see how to make a proper source program, using the
Editor.

First the editor must be loaded from cassette. It exists as screens 1 to /
on the source tape, therefore having aligned the tape and set SPEED
correctly, type 1 7 CLOAD < CR > and play the tape.

The seven screens will now be loaded, and OK will be returned at the
end. |If you wish to see the source text, then 1 LIST <<CR > will dis-
play the first 4 lines of screen 1. Any key except | displays the follow-
ing four lines, ¢ scrolls through to the end.

Also 1 7 INDEX <<CR >will display the comment lines at the top of
screens 1 to 7,

The source text can now be compiled into the Forth dictionary, which
simply requires that you type 1 LOAD <CR >,

The 7K of source text will now be compiled (taking 30 — 4@ seconds)
to 1.5K of Forth object code. Two messages “xxxx ISN'T UNIQUE"
will be generated {don't worry) and finally the message "EDITOR
LOADED" will appear.

To use the Editor, now type EDITOR <<CR > . You now have to
choose a suitable block to put your new program — lets say you choose
block 4. To clear this of any rubbish, you can type:-

4 CLEAR <CR > or to see what is there, type

4 LIST < CR > which displays that block (also called a screen) 4
lines at a time (press any key to get subsequent groups of 4 lines, or
! to scroll through to the end).

Each ‘screen’ consists of lines @ to 15, each of which can hold 64
text characters.

To enter some new text on line @, enter the command
@ NEW <CR > which ‘opens’ line @ for text entry. Anything you
type up to the next <<CR > will be entered into that line.

By convention, line @ of each screen is a comment line, describing the
contents, so try entering:- {(THIS IS AN EXAMPLE SCREEN)
<CR>

The editor will now prompt you for line 1. If you wish to leave this
line a blank, type a space, <CR > , and line 2 will be prompted. Sup-
pose we enter the CUBE definition from the previous chapter

: CUBE DUP DUP * * ; { n———cubeofn) <CR>

If that is all you want to enter onto this screen,type < CR > straight-
away in answer to the prompt for the next line. You can now try
command L to display your new screen, and try out some of the other
Editor commands. *

You could now LOAD vyour new screén, add the words in it to the
dictionary,

In the following section, some of the editor commands and their eifects
are described.

* When you have finished editing a screen, enter the command
FLUSH < CR > this ensures that your edited screen is put back onto the

disc.
Text Input Commands

Having selected the screen for editing (say screen 4), by going 4 LIST
< CR >, or 4 CLEAR < CR > the following commands are avail-
able for insertion of text, 1 P This text willgoon line 1 <CR >

P means ‘Put a new Line’, and the proceeding number is the line selected.
All the characters after the space after P are put on the line {1 in this
case), overwriting anything already present. Max line length is 64
characters. Beware of not putting anything at all. |f you accidentally
go 1 P <CR >, a ’'null’” will be put in this line, which will cause an
error later. If youdothis,go 1 E <<CR > to erase the line completely.

n NEW <TCR >selects line n for input. The screen is displayed to
you, with line numbers, as far as line n, where it stops and prompts
for your input. Now type in the required text, finishing off with a
< CR > . immediately, closes the input, and the rest of the screen
scrolls through.

n UNDER <CCR > displays the screen down to the beginning of line
n + 1 , and waits for your input, as in NEW,

The original line n + 1, and succeeding lines are moved downwards.
Line 15 is lost,

16-

Screen Editing
These commands operate on whole screens.

n LIST <CR > displays screen n

n CLEAR <CR >> clears screen n to all spaces

nl n2 COPY <CR >copies screen ni| to n2

L re-lists the current screen, and the current cursor line

FLUSH forces all amended screens back onto the disc after editing.

Line Editing
These commands operate on a selected line within the current screen.

Use is made of a buffer area in RAM called the PAD (short for Scratch-
pad). PAD is always 68 (decimal) bytes higher in memory than the top
of the dictionary.

n H <<CR >copies line n into the PAD buffer {Hold)
n D < CR>copyline n into PAD, and delete the line from the screen.
Lines n+11to 15aremoved up, and new line 15 is cleared.

n T <CR > Type line n on the terminal, and save it in PAD

n R <CR > Replace line n by the line stored in PAD

n | < CR > Inserts the stored line in PAD into line n. Existing lines n
to 14 are moved down to make room. Old line 15 is lost.

n E <CR > Erase line n to space.

n S <CR >Spreadoutatlinen. Lines1to 14 are moved down, leaving
line n clear.

String Editing and Cursor Control

Editing operations on character strings within the current line take place
with reference to the editing cursor, displayed as a crosshatch

character ‘W',

Initially, TOP, sets the edit cursor 1o the top of the screen. Going back
to the example above, where definition CUBE was entered onto line 2,
then 2 T <<CR >willdisplay line 2,with the edit cursor at the start of
the line ®: CUBE DUP DUP * *

17-

To find the string DUP, type F DUP <CR >. The screen is searched
forward from the editor cursor position to locate a match to the string
you have requested, and when found, displays as follows:

: CUBE DUP m DUP * * Edit Cursor

Going N <<CR > will continue the search for the NEXT appearance of
the same text

: CUBE DUP DuUPE* *;

Executing B <<CR > takes the cursor back by the length of the text
string located.

: CUBE DuUPmDUP * *:
Note that the cursor can also be moved directly by the M command.

Having located the part of the line you wish to operate on, the following
commands allow you to delete/change strings of characters.

X DUP <CR > Command X searches for and deletes the string
: CUBE DUpPm* *:

C DUP < CR > Command C copies the string that follows into the
cursor position

 CUBE DUP DUPE * * .

Other commands are TILL text and n DELETE, which are explained
in the glossary.

Chapter b
An Example of Program Development — Simple PRINT Utility

Let us think of a starting specification for this:

“To print a contiguous block of screen numbers, at three screens per
page, with page number, title line and system ident message””.

Forth is a top-down language — that is, one where problems are best
solved by starting from the top of a program, and working inwards,
refining at each step.

So, suppose we want to issue a command ‘from’ ‘to’ PRINT <<CR >,
and the spec above says it does 3 screens per page. Presumably if
there are less than three, then just those left are printed.

Thus the first attempt might be something like
PRINT SET-PAGE-1
MORE-THAN—-3-SCREENS?

IF PRINT-PAGE-FULL ELSE PRINT-WHATS—LEFT
ENDIF

REPEAT-TILL ALL DONE :
Of course this won't work, but it has all the essential elements,

If we also define @ VARIABLE P#for page number, then SET—PAGE—1
becomes 1 P# |

Also, we haven't yet turned the printer on or off!
So for our next attempt, we can have

: PRINT 1 P# 1 PR—ON (printer on)
SET—LOOP—-UP BEGIN ({begin loop)

2 3—LEFT—-TO-DO? {enough for a whole page?)
IF DO-PAGE ELSE DO-REST ENDIF
UNTIL (till all done)

PR—OFF ; {printer off)

and now we can define a few more things,

HEX : PR—ON FF 2F1 C!;

. PR—OFF 7F 2F1 CJ;
DECIMAL

-19.

these modify Forths /O handlers to enable/disable the parallel printer
port.

How about DO—-PAGE? if this took in the arguments start—screen—
number and count—left, and returned the updated versions, i.e, start
+3 and count -3, then it automatically leaves the correct arguments
to be called again in the main loop.

With a bit of trial and error, | got
: DO-PAGE 3 — SWAP 3+ SWAPOVER DUP 3 —PRINT-IT ;

This DO—PAGE adjusts the start and count, and also then produces
values ‘from” ‘to’ for PRINT—IT, which is going to do the real work.

Similarily, DO—REST should also return the two adjusted values, except
that the final ‘count-left” will be ZERO.

- DO—REST {from to ——— from @}
>R ®OVER DUP R> + SWAP PRINT=IT :

This works out nicely, because the ‘count—left’ is on the top of the stack,
and is only @ when all the printing is finished, so it can be used to test
for exiting from the main print loop.

We also need to alter the ‘from’ ‘to’ numbers which are input initially,
to the ‘from’ ‘count’ required by DO—-PAGE and DO—REST. This
same ‘count’ can then be tested to see if it is > 2.

So now we have

PRINT {from to———)

1 P# | (set page 1)

PR—ON CR (printer-on, CR)

OVER - 1+ {change ‘from’ ‘to’ into “from’
‘count’)

BEGIN {start print loop)}

DUP 2 >IF {test count value)

DO-PAGE ELSE
DO—REST ENDIF
CR

DUP @ =UNTIL
DROP DROP CR
PR—OFF

{full page if >2)

{else the rest)

(force output to occur)

{(loop until @ count is true)
(throw away unwanted variables)
(printer off and done)

20-

PRINT—IT is next, and it receives as input the ‘from’ and ‘to" values,
which can be used in a DO..,.LOOP’

PRINT—IT {(to from ——— print them)

PR—ON DO | PRINTSCRN LOOP CR 15 MESSAGE CR CR CR
CR PR-OFF ;

So this now does the whole or part page, calling PRINTSCRN to print
one screen, and the system identification message (number 15) at the
bottom.

Now we need PRINTSCRN — this can be borrowed entirely from the
LIST function:

PRINTSCRN {n ——— print this one)
DECIMAL CR DUP SCR ! , " SCREEN " . 16 @ DO
CR I 3. R SPACE | SCR @ .LINE LOOP CR ;

which gets lines ata time ina DO.....LOOP and calls .LINE to print them,

So this is almost complete now, and the final utility is reproduced at
the end of the chapter, using codes for an OK/! printer which can do
double size characters, See if you can work out how it fetches the print
header message and adds it and the page number to the top of each page.

Also reproduced is a sample stack diagram. These are invaluable in
trying to visualise what is happening on the stack, and their use is highly
recommended.

21-

PRINT UTILITY PAGE 1

SCREEN 3

@ (PRINTING UTILITY 1 of 3 WANB NOV 81)

i FORTH DEFINITIONS DECIMAL

2 0 VARIABLE P#

3 (LINES6 TO 8 ARE PRINTER DEPENDANT)

4 HEX : PR—ON FF 2F1 CI;

5 : PR—OFF7F2F1C!;

6 :BIGCH 1F EMIT ;

7 : NOMCH 1E EMIT ;

a . TOF CR . " READY?" KEY DROP ;

9 DECIMAL

10 PRT-SCREEN {n ——— prints scrn n)

11 DECIMAL CRDUPSCR I ., SCREEN" . 16 0 DO

12 CR13.RSPACE|ISCR @ LINE LOOPCR;

13—

14

15

SCREEN 4

@ (PRINTING UTILITY 20f 3 WANB NOV 81)

1

2 PRTHED (output page header)

3 PAD C@ 38 MIN 1 MAX PAD C! BIGCH SPACE PAD COUNT
TYPE 31

4 PAD C@ — DUP @ < IF CR DROP 32 ENDIF SPACES

5 "PAGE” P# @3 .RCRCR 1 P#+! NOMCH ;

5]

7 PRINT—IT (endstart ——— print these scrns)

8 PR—ON PRTHED DO | PRT-SCREEN LOOP

9 CR 15 MESSAGE CRCR CRPR—-OFF ;

10

11 : DO-PAGE ({from count ——— frm+3 count—3 do 3 scrns)

12 3 — SWAP3 +SWAPOVERDUP 3 — PRINT-IT ;

13—

14

15

SCREEN &

@ (PRINTING UTILITY 3 0of 3 WANB NOV 81)

1

2 DO—REST (from to ———from @ do 1 or 2 scrns left)

3 >R @ OVER DUP R > + SWAP PRINT-IT ;

4

5

6

7 PRINT {n m —— print screens n to m, 3 per page}

8 CR ." HEADER:" EDITOR ENTER

-272-

g 1 P# | PR—ON CR OVER — 1+ BEGIN

10 DUP 2 > IF DO-PAGE ELSE DO—REST ENDIF
11 DUP @ = TOF UNTIL

12 DROP DROP PR—ON CR CR CR CR PR—OFF ;
13 ; S

14

15

ORIC FIG—-FORTH

23.

‘SUgaINs £
J0 304 B 10} SJAQUINU UIAIIS 1JEYS, pue ,pua, ale
859U "8l W04y, pue £4+Wody, W0y syl u ‘11— I NIYd
lojy sjuawnbie ausinbas ayl pue ‘luncd, pue WOy,
palepdn auyl salesauab 11 'susalds £ S JOY4 € 8duIg
18] ,UN0), pue ,WoJy,ulas Builiels ayl ylim siaiug

3O¥d—00 :S3L1ON

&
&

LI—1NIYd £—1unoy £+woly
= woi4 C4Wol4 £—1unon CHwot
e £ C+W01 £+WoLy | £—wnoy | g+woly
dna SO0 £+WOI{ | £—1UN0Y C+WOI
H3IAO0 £4+WO0I4 [£-IUn0] | g4woly
dVMS g—wnop g+wolg
+ C+WOI4 £—3uno)
£ £ woi4 | £—wunod
dYMS woiy | g-1noy
- £—1una) woi4
£ £ wnoy wo.
39vd—-03d wnoj wo.
(¥0B1S 3yl UD ,JUNGI, PUB ,WIOJ), YA Stalua)
SAYOM dOL AIVLS

39%d4—00 - JHdOM
ALITILN LNIYd - NOILVOITddY

24-

Chapter 6

FORTH Dictionary Structure

Since 99% of FORTH is in the dictionary, it is very worthwhile to investi-
gate its structure, which we can do by reference to our favourite example,
the CUBE command. When you typed in

: CUBE DUP DUP * * ; <CR >

the new word CUBE was added to the dictionary. In memory, it actually
looks as follows, where each rectangle represents a byte of memory.

olc|o(@

E + $80

low link

hi link

Im::l address of

hi |DO-COLON
low| address of

hi) DUP

lo] address of

hi | DUP

| lo I address of
hi) ™

lo } address of
hi) *

lo | address of

| hi/ SEMI-COLON

NAME FIELD ADDRESS A

e L —

LINK FIELD ADDRESS

PARAMETER FIELD ADDRESS"

Higher Memory

NEXT FREEBYTE -

95

-

.

Dictionary Header
for word
‘CUBE’

Parameter BLOCK
of ‘CUBE’, giving
the list of
operations to be
performed,

As you see, a dictionary entry comprisesa HEADER SECTION, and a
PARAMETER section. The first contains all the necessary information
that describes the name of the entry and its type; the second part con-
tains a list of addresses which effectively point to those words which
make up the new word,

The header block is subdivided as follows:

Name Field: This starts with a length byte, whose five LSB’s indicate
the length of the following ASCII string, which is the name of the
FORTH word. The MSB of the length byte is also set to identify it.
Then comes the ASCII string of the name, and the final character also
has its MSB set, to mark it.

The address of the length byte is generally known as the Name Field
Address, or NFA,

Link Field: This contains the Name Field Address of the previous
dictionary entry. Thus these Link addresses chain right through the
dictionary, allowing it to be searched from the most recent end down-
wards. The address of this field is the LFA.

Code Field: This is the field which defines the ‘type’ of word, and it’'s
address is called the Code Field Address (CFA). The CFA of the
definition is also the address at which execution of a word starts;
the contents of the CFA being the ADDRESS OF REAL, EXECU—
TABLE, MACHINE CODE.

In this example the code field contains the address of DO—COLON, a
code routine to perform a FORTH subroutine type of call, appropriate
to a COLON definition such as CUBE.

Any Word compiled by “:" will have the address of DO—COLON in the
CFA, other Word types will have other addresses-in here, depending on
the ‘class’, or ‘type’ of Word.

The Parameter Field contains, in this example, a list of the Code Fieid
Addresses of the Words which make up ‘CUBE’, and the first address is
called the PFA. For COLON definitions, the list terminates with the
address of SEMI—-COLON, which is effectively an ‘end-of-subroutine’
function — a sort of FORTH equivalent of RTS in assembler. The con-
tents of the parameter field will also vary with the “type’of Word.

Vocabularies

The link addresses chain all the dictionary Words into a long list,
in the first instance, is the whole of the FORTH VOCABULARY. For

convenience, and searching speed, you can segregate new Words into
different Vocabularies, an example being the EDITOR.

Vocabularies have two main effects: First they increase compilation
speed, by allowing dictionary searches to start in-the right ‘area’.
Secondly, you can have Words with the same Name in separate

-96-

Vocabularies, with less risk of confusion (e.g. Editor ‘R’ command and
FORTH ‘R’).

When a new Vocabulary is set up, the Link address chaining is modified
to ensure that new Words are compiled into the CURRENT VOCABU-
LARY,

An Example

1. After loading FORTH, the initial dictionary structure is as shown:
LIKKS

$400
All words in the FORTH VOCABULARY

~pHi memory

Start of FORTH
2. On adding the EDITOR, a second Vocabulary exists:

Links
within
EQITOR

Start of FORT Start of EDITOR VOCABULARY

When you type EDITOR < CR 2>, this tells the interpreter that all
dictionary searches will start at the top of the Editor Vocabulary.
Typing FORTH << CR > resets the pointer, called the CONTEXT
VOCABULARY pointer, to the top of FORTH, so the Editor is
skipped over.

3. Now suppose we add : CUBE to the FDF{TH vocabulary.

--|=:

last Tink goesto Start of FORTH

Start :::f start of
Editor FORTH

Notice how CUBE is added to the end of the dictionary, but the
FORTH linkage now skips right over EDITOR.

As before, the end of EDITOR points through to the start of
FORTH; the general rule being that all vocabularies fall into the
main FORTH vocabulary, but not into each other,

4. If we now added, say, some new Words into a Vocabhulary called
PRINTING, we would get:

LABEL points to
start of FORTH

Start of
'PRINTING!

Now there are three VOCABULARIES: FORTH, EDITOR, and
PRINTING,

FOR SAFETY, ALL NEW VOCABULARIES CHAIN {i.e. LINK)
TO FORTH, NEVER TO EACH OTHER.

B. To set up a Vocabulary, the relevant instruction is FORTH

DEFINITIONS (set FORTH as main VOCABULARY) VOCABU-
LARY FRED IMMEDIATE (declare a new VOCABULARY
called FRED) then FRED DEFINITIONS sets FRED as the
CURRENT vocabulary (i.e. new Words are added to the FRED

list).

Finally, FORTH DEFINITIONS goes back to FORTH at the end
of FRED's additions.

To use Words that are in FRED, type FRED <CR >

The Other 1%

We said that 99% of FORTH is in the dictionary. The 1% that is not
(apart from the stacks), is the CASSETTE—-BUFFER AREA, and the

USER VARIABLE BLOCK.
These are located at the top of memory (see the memory map).

The ‘user variables ' is actually a block of variables used by the system,
though they are all accessible to you. They are called USER variables
because their values are particular to a specific user. FORTH can be
made multi-user, and in such cases, there would be a block of USER
variables for each person and only the user pointer then needs to be

changed to reference each.

The actual contents, their meanings, and the relevant boot-up values,
are given in an appendix, and the glossary.

The cassette-buffer is the area in which you manipulate cassette infor-
mation. As supplied, there is 1 buffer, 1028 bytes long, used in turn by
the FORTH cassette manager. The buffer is composed as follows:

2 bytes: Holds the ‘disc’ - block - number which is loaded into this
buffer.

1024 bytes: The data area, holding a 1K “disc’ block.

2 bytes Contain @, to make the end of the buffer,

If you wish to get at ‘disc’ information, the relevant FORTH words are
BLOCK, BUFFER, UPDATE and FLUSH. See the Glossary.

-28-

Chapter 7
The Code Field

In every FORTH dictionary word there is a two byte location called
the CODE FIELD. This very important field determines the TYPE of
word, and how it executes.

The contents of the CODE FIELD are the address of a real machine

language routine to be executed when the word is first called, i.e. the
CODE FIELD ADDRESS represents the start of the word.

To see how it functions, we must consider in more depth how FORTH
works.

As described in Chapter 7, most FORTH words consist of a list of
addresses of other words to be executed. The FORTH program counter,
called IP (Interpretive Pointer), follows this list item by item, acting in
a very similar way to the processors’ own program counter,

Let us first look at the ‘:" type of word, the most common, and our
example CUBE, Suppose we have another word which has somewhere
in it the word CUBE, e.g. : FRED 3 CUBE . ;

When this word has started, IP points first to ‘3’, which is actually
defined as a FORTH word to put the value ‘3’ onto the stack. IP is
then incremented by two, and points to the list entry for CUBE, which
contains the CODE FIELD ADDRESS of ‘CUBE’. FORTH now
performs an INDIRECT JUMP instruction. This means it ends up not
at ‘CUBE’, itself, but at the machine code routine pointed to by
‘CUBE’s Code Field. That sounds very confusing. Lets try and draw it.

3 CODE CODE CODE
Address Lou

HEADER FIELD FIELD FIELD FIELD

For of anpress |oaooress | aooress | ADDReESS

FRED DU of of of of

EELUH -:.lr rEUBEI bt ri'l

Stage 1: '"IP' points hereJ
on completien, [P
is incremented so:

Stage 2: 'IP" points here — L

and so we have here, CODE FIELD of 'CUSBE! Do COLON
within 'FRED'

] 103 Lt Address o points
1p b2i0ts Y0 b onmess p&in - outoLon® to feal Lode
4]
gF CUBE

Here are the two levels of indirection for which FORTH is renowned -
i.e. two levels of pointing to the real code.

The Jump Indirect {which is part of the FORTH inner interpreter)
takes execution straight to ‘DOCOLON’,

‘DOCOLON’ behaves like a subroutine call, in that it says:

‘In order to start executing the new word {(CUBE in this case), IP must
be changed to point to the list within CUBE — its parameter field. To
do this we must first save where IP is at the moment’.

And that is what DOCOLON does. It first saves |IP on the processor
RETURN stack, and then loads IP with the address of the start of
‘CUBE’s list of addresses.

CUBE finishes with a ;. This is the reverse of DOCOLON — it pulls
the stored value of |P off the return stack and restores it.

In summary the, DOCOLON is a sort of FORTH ‘JSR’, and ‘; is the
equivalent of RTS.

DOCOLON is only one of many things that can be in the Code Field.
DOCOLON is only appropriate to words defined with the ‘:’ symbol,
as only this means that the new word will consist of a list of old words,
hence if the CODE FIELD of a word contains the address of DOCOLON,
the word is a ‘colon definition’.

Other Word Types

The other common word types in FORTH are CONSTANT, VARIABLE,
USER and CODE.

Example 1

3 CONSTANT FRED defines the word ‘FRED’ which is a constant
type, and the value of the constant is 3. Its dictionary entry looks like

HEADLR R 113]3 VALUE
’FREHT FIELD '3
b Points to DOCONSTANT' — this defines the operation of

a CONSTANT, and is a routine which extracts the value ‘3’ and pushes
it onto the stack when FRED executes,

Example 2

5 VARIABLE DICK defines a VARIABLE type, with the initial value
of the variable set of 5.

-30-

HE ADE R Cant
"0ILK! FIELD

L T Address of storage location

IE!

Points to ‘DOVARIABLE" — this defines
the operation of VARIABLE, which is that when DICK executes, the
ADDRESS of the storage location is pushed onto the stack.

Example 3

26 USER TOM defines a USER variable, named TOM, User variables
are stored in a special block in high memory, and this would define
TOM as being the 26th entry in the user block, and when TOM
executes, the ADDRESS of the storage location is pushed onto the stack.

Example 4 — with an Assembler
CODE HARRY code

machine code.

defines a machine code routine. In this case, the word contains the
code to be executed directly, so the code field points to the start:

HE ADL R COAaE MACHI&AE CODE
"HARRY" FIELE INSTRUCTIONS

1 points here

(See also the next chapter)

The next question is — where do the routines DOCOLON,
DOVARIABLE etc, actually reside?

The answer is they form part of the relevant DEFINING WORD. A
defining word is one of the group of "', VARIABLE, etc so called
because they DEFINE a new word of the appropriate type,

DEFINING words can be thought of as special words, which have two
distinct parts, one which specifies how to compile an entry of the
correct type, and the second part which defines how it will execute.

For example ‘' : ' looks like this:

HEXT
i L15T QF MACHINE CODE OFCTIONARY
COLOK WORDS ENTRY
= *

this is 'DOCOLON’ ——

When ‘" executes (e.g. when you enter : FRED ;), the ‘LIST OF
WORDS’ are the FORTH words necessary to CREATE a dictionary
header whose name is FRED, and whose CODE FIELD contains a
pointer to ‘DOCOLON’, the machine code which follows the ‘:CODE’
word.

Thus a defining word consists of:

* A ‘BUILD’ part, which BUILDS the correct type of dictionary entry.
* A 'DOING’ part, which'is the common execution code for words of
this type.

Now we get to the best (or worst) part of alll

One of FORTH's important features is the ability to create new defining
words. This is something that is very useful, and is a feature found in
only one or two other computer languages — of which BASIC is not one.

Two sorts of defining words can be generated — ones where the DOING
part is in assembly code, and ones where the DOING part is in FORTH.
The first sort offer a faster execution speed, but it is very important to
know what you are doing. The second sort are easier to do.

Wewill restrict ourselvesto a simple example, a definition of CONSTANT.

: CONSTANT CREATE SMUDGE , :CODE LDY #$2 < — Thisis
'DOCONSTANT’
LDA (W), Y
PHA
| NY
LDA (W), Y
JMP PUSH

So, : CONSTANT defines the name of this operation,
CREATE SMUDGE , generates the dictionary header for the new
word,
; CODE is the clever one which puts the 'DOCONSTANT start
address of the machine code into the code field address of the

new word.

This short piece of machine code {for 6502) is what actually gets the
value out of a CONSTANT parameter field and puts it on the stack.

The second sort of defining word has the DOING part in FORTH, and
is most often used to create types of data structures,

Example: Here is ‘CONSTANT’ impiemented this way:
: CONSTANT <BUILDS , DOES> @ :

Unpicking this .. : CONSTANT is standard.

-32-

< BUILDS means “‘everything that follows here up to DOES > is the
building part of this defining word”. <CBUILDS itself takes care of
generating FORTH headers.

& ¥

) Means ‘takes the word on top of the stack and compile it into
the next dictionary location, Remember that to use
CONSTANT, a value is supplied first, which will go on the
stack, and sits there until *, " uses it.

So < BUILDS , generates the header part of the new dictionary
entry,and ‘,’ puts the value into its parameter field.

DOES> means “‘everything that follows is the FORTH to be executed
whenever the newly BUILT word executed’”’. DOES > also
pushes the parameter field address onto the stack when the
new word executes. Since, in this case, our constant is in the
parameter field, '@’ gets the value stored at this address.

So if you went 120 CONSTANT MINE, using this definition of
CONSTANT, it would BUILD a dictionary header named ‘MINE" and
embed the value in the parameter field.

When you execute ‘MINE’, the DOES part is called to get the value and
push it onto the stack. Simple really!

Now you work out this one, which creates one-dimensional byte arrays.
. BYTEARRAY <<BUILDS ALLOT DOES> + ;

and would be used 23 BYTEARRAY FRED to make FRED, an array
of 23 bytes numbered @ to 22.

.33-

Chapter 8
Machine Code Words

It may be, that in order to improve execution speed, or to link to
routines in EPROM, that a machine code routine is required.

The true method is to use a structured FORTH assembler. However, it
would be useful to see how machine code can be written directly in
FORTH without the use of an assembler., The instructions for the
assembler supplied with your cassette are described later in this manual.

The method used is to supply the assembler code as hex words or bytes,
and to use the FORTH words comma ‘" and ‘C," which places the
bytes into the dictionary.

Let us have a simple example. To create the ‘ZAP’ sound:
In assembler, the actual code required would be:

STX XSAVE (save X)
JSR $F41B (ZAP)
LDX XSAVE (GET X)
JMP NEXT

Where NEXT is the FORTH linkage address to which ALL machine
code routines must go when they exit.

So first get the Hex codes for these instructions:

S0 you would get:

Address Hexcode Instruction
4000 8685 STX XSAVE
4002 20E1FA JSR ZAFP
4005 ABBbS LDX XSAVE
4007 4C4404 JMP NEXT
Step 2

Write down the Hexcodes, in pairs, in the order given: 86B5 20E1
FAAG B54C 4404

Step 3
Reverse the bytes in each pair: B586 E120 AG6FA 4CB5 0444

We can now make a compilable machine code routine.

.34-

HEX
CREATE ZAP B586, E120, AGFA , 4CB5 , 0444 , SMUDGE

CREATE makes the dictionary header.
SMUDGE terminates the routine,
HEX is necessary because the code is in HEX.

{This method of "“hex-code, hex-code,” will also work with ;CODE
for making new defining words).

In order to make much use of an assembly code routine, you need to
know some more details of what you can and can not do.

* At the start of a Machine-code Routine

On entry to a routine, the 65602 Accumulator and Y-Register are avail-
able for use. Y is always set to zero on entry.

The X register is the FORTH stack pointer and should not be used, or if
it is, save it first in the location XSAVE {which is HEX Bb), and restore

it again at the end.
* Stack Access

The FORTH stack deals with 16-bit numbers. The current top-of-stack
location is accessed as address @,X (lo-byte} and 1,X (hi-byte). The
next item on the stack would be at 2,X and 3,X {e.g. as in LDA @,X).

If you wish to make room for a new item on the stack, then DEX DEX
is required. Similarly, INX INX winds the stack pointer (X) past the
top entry to DROP it,

* Zero—Page
All of zero-page locations B6 to FF are available for your use.
* Branches

DO NOT USE "JMP’ instructions except as given in the next section. If
you want an unconditional branch, fiddle it by using

CLC

BCC FRED
which uses no more space and is relocatable.
* Exit Points

A variety of these exist, and they all eventually return to '‘NEXT’, doing
some commonly used functions on the way. They must all be invoked
with a JMP instruction.,

NAME HEX ADDRESS FUNCTION

NEXT @444 Proceeds to the next FORTH
instruction,
POP @5EE Pops {remowes) the top stack

entry and goes to NEXT,

POPTWO @5EC Pops the two top stack entries
and goes to next,

PUSH 343D Creates a new stack entry, and
puts into it the high byte from
the accumulator, and the low
byte from the 6502 return stack
(pushed onto it before jumping
to PUSH),

PUSH@A @7DC Similar to PUSH, except that the
high byte of the new entry is
automatically set to ZERQ, and
the low byte is the current
Accumulator value,

PUT B43F Similar to PUSH, except that the
new stack entry overwrites the
current top-ofstack item.

* Example

This example is taken from the FORTH interpreter, and is the code
which comes out of the '+’ operation, to add the two top-stack items
together.

18 CLC ;o Carry =0
BS (0@ LDA @.X ; Add low bytes
75 (2 ADC 2.X ; Add low bytes
05 @2 STA 2,X : Andstore
BS 01 LDA 3,X ; Addhigh bytes
75 @3 ADC 3,X :; Add high bytes
95 @3 STA 3,X ; Andstore
4C EE @5 JMP POP ; Exitdroppingold top item,

so writing this out gives:
1885 0075 0295 @2B5 @175 @395 @34C EE@5
and swapping the byte pairs and adding the other bits then gives us

HEX
CREATE + B518 , 7500 , 9502 , B5@2 ,
7501 , 9503 , 4C03 , O5EE ,

SMUDGE
DECIMAL

.36-

Note:

Appendix A

Error Messages

Setting WARNING to —1 will cause any error to ABORT and

restart FORTH as if from a warm start.

In the following table, 'XXXX' indicates a Word or Words in error.

11

XXX ?
This is issued by

a) The compiler/finterpreter if it can’t find Word XXXX
in the dictionary. Usually caused by mistyping!

b} The Editor find routine if it can’t locate the requested
string.

? Empty Stack (Message No: 1)

An attempt was made to POP something from the parameter
stack when it was empty.

? XXXX Isnt Unique {No: 4)

This is a warning that you have compiled a2 Word with a name
that has been used already. The compilation still takes place.

? Disc Range {(No. 6)
You have used a screen number that is out of range.

? Full Stack {No: 7)
Self explanatory.

? XXXX Compilation Only (No: 17)

You have tried to execute XXXX directly from the terminal.
It is only valid within a definition i.e. when compiling into
the dictionary.

? XXXX Execution Only (No: 18)

Similar to above, XXXX is only valid for execution and can’t
be compiled.

.37-

8.

10.

11.

12.

13.

14,

? XXXX Conditionals not Paired (No: 19)

You have finished a definition without correctly pairing up
one or other of the following:

DO LOOP
DO +LOOP
IF ELSE ENDIF

BEGIN UNTIL
BEGIN AGAIN
BEGIN WHILE REPEAT

? XXXX Definition not Finished {No: 20)

An alternative error message generated by an improperly
completed definition.

? XXXX In Protected Dictionary (No: 21)

You have tried to FORGET a definition which is in the
protected area below the FENCE trap address.

7 XXXX Loading Only {(No: 22)

Similar to 6 and 7 for instructions that are only valid when
loading from disc.

7 XXXX Off Current Screen (No: 23)

The Editor Cursor position has been moved off the current
1K Screen. TOP resets to position @.

? Dictionary Full (No: 2}

The word name displayed is likely to overflow the remaining
dictionary space.

? Disc Error (No: 8}

Some form of loading error.

.38-

Appendix B

Variables Stored in ‘User Area’

Offset from base of User Area

HEX DECIMAL
@ @
2 2
4 4
6 6
8 8
A 10
C 12
E 14
10 16
12 18
14 20
16 22
18 24
1A 26
1C 28
1E 30
20 32
22 34
24 36
26 38
28 40
2A 42
2C 44
2E 46
30 48
32 5¢

4 \’
7E 126
WARM
level.,
COLD

NAME

{(NTOP)
(BSCH)
(UAREA)
(S0)
(R@)
TIB
WIDTH
WARNING
FENCE
DP
VOC—LINK
BLK
IN
ouT
SCR
OFFSET
CONTEXT
CURRENT
STATE
BASE
DPL
FLD
CSP
R#
HLD

Free

LOADED FROM

FUNCTION BOOT TABLE
$40C
$40E
$410

Initial parameter stack pointer $412

Stores initial return stack pointer $414

$416

WALFIM $418

Described in the glossary ﬁ,}g
COLD

1 $41E

$420

means warm start reloads the User parameters down to this

also resets down to this level,

-39.

Appendix C
Saving an Application

When you have developed some application, you might wish to save the
compiled form as a run time file. To do this, some of the boot-up table
needs to be amended such that a cold start includes your new application.

An example of what needs to be done is at the end of the Editor code,
which is reproduced here with comments.

FORTH DEFINITIONS DECIMAL

LATEST 12 +ORIGIN I (set bootstrap pointer to top of dictionary)
HERE 28 +ORIGIN I (sets FENCE to top of dictionary)

HERE 30 +ORIGIN | (sets bootup dictionary pointer)

HERE FENCE ! (sets current fence)

If you have declared any new vocabularies, you also need to go
CXXXXX 6 + 32 +ORIGIN ! (sets initial vocabulary link)

Where XXXXX is the name of the most recent vocabulary. Having
tacked this lot onto the end of your program, compile it onto FORTH,
and then go

HEX HERE 1 - ¢ D . < CR>
and this prints the top address of the whole thing (in HEX)

Loading and running this new file will bring up FORTH plus your
application straight away.

One thing that is commonly done is to make a combined FORTH +
EDITOR file, to save compiling EDITOR everytime.

FORTH-SAVE will save on cassette your new version of Forth., It
will ask for the file name and tell you to press space when ready.
Remember to set SPEED to @ or —1 for fast or slow save. HEX 1 2AD |
witl make Forth autoload.

40-

]
TOP OF MEMORY 48K
A3FF |5
9K CASSETTE |
SOURCE BUFFER | ABDD |
7CO0
—— e |
‘1K’ BUFFER
| DAREA | 7750
'USER'VARIABLES UAREA | 7760

PAD = HERE+68

-_________[____________ 1 HERE
| USER PROGRAMS
FORTH ,
SYSTEM ‘FORTH
(DICTIONARY) 400
| System Variables |g§g
l/ i
TERMINAL]
INPUT BUFFER 100
System Variables
| Bb
FORTH REGISTERS
PARAMETER 9F
STACK 20
1F
System Variables
@

ORIC-FORTH V2 MEMORY MAP

41-

Warning:
shared with
HIRES

Appendix D

CONTENTS OF CASSETTE

Side 1: FORTH
EDITOR

Side 2: ASSEMBLER
EXTENSIONS
TUNESMITH

Oric Forth on Cassette

SCRNQ@1-¢7

SCRN@1-05
SCRN@1-87
SCRN@1-04 (MUSIC PLAYING DEMO)

Extensions to Standard Vocabulary

Cassette 1/0

SPEED User variable for cassette speed: (@ SPEED | sets fast

CLOAD n m

CSAVE n m
n must be

Cassette Primitives

{STORE) n
(RECALL) n
SETUP n
NAME n
Other Extensions
PAPER n
INK n
CAPS

KLCK
FORTH-SAVE
TEXT

HIRES

caps

fom

42-

—~1 SPEED ! sets CUTS
(stow)

loads 1K source blocks n to m
inclusive into buffers

saves ditto

executes m/c code save routine
linking to BASIC

ditto loading

computes block addresses from
biock no.

sends filename to buffer area

n=0 to 7 changes PAPER colour
as for paper

toggles caps lock

toggles key clicks

Save Forth on cassette
Switches to Text mode
Switches to HIRES mode
lower case caps lock

APPENDIX E

FORTH Assembler for ORIC—1

Fancy a full macro-assembler for the 65@2, with pseudo-structure
commands, symbols, equates, operating in reverse Polish (!} with a
source code just 80 lines long?

Look no further, here it is.

Featuring:

Macro instructions {IF, BEGIN, etc), user extensible as required.
Literals in any numeric base (alterable).

Expressions using any resident computation algorithms.

Nested control structures.

Symbol equates.

Labels (if desperately required).

Assembler source code in a portable high level language.

N oo s wN

The Assembly Process

A FORTH code assembly consists of interpreting in the Assembler
Vocabulary.

The FORTH outer interpreter tries to match the incoming text stream
against the context vocabulary, set to Assembler, defaulting to FORTH
in the usual way if there is no match,

Words in the Assembler Vocabulary will specify operands, address
modes, opcodes etc, which will be acted upon and at the end of a
CODE definition, the new Word is “unsmudged’ if no errors are
detected.

During the assembly process, each assembler Word will execute as it is
encountered. Its function at thisinstantis “assembling” e.g. generation
of an op-code, or an address, Later on, at RUN time, the assembled
machine code executes.

Opcodes

All mnemonics {and Macro’s) end in a comma **, ' in this assembler.
The significance of this is:

a) The comma ends a group of assembler words which would
correspond to one line of “ordinary’’ assembly code.

-43.

b) The FORTH comma operator * , ' compiles a word into
the dictionary, thus a comma on the mnemonic reminds
that this is the point at which something gets entered into
the dictionary.

rr

¢) The use of ', allows you to distinguish between a
mnemonic and other words,

(e.g. the HEX number ADC and the add mnemonic ADC,)

An Example

CODE NOT-MUCH

NOP

NEXT JMP,

. C

CODE creates a dictionary header named NOT—MUCH and sets
CONTEXT to Assembler. This header will direct FORTH to execute
the ensuing machine code instructions at run time, NOP, is mnemonic,
and the interpreter executed NOP, which compiles the HEX byte
SEA., NEXT JMP, compiles the instruction '"Jump to the address of
NEXT".

;C makes a couple of error checks, and unsmudges the dictionary
header, It compiles nothing.

Next

FORTH interprets your definitions under control of the address inter-
preter, called NEXT.

At the end of a code definition, control must return to NEXT, or to
one of a few alternatives which manipulate the stack before returning
to NEXT (see Chapter 9 for a reminder of these).

For 6502 systems, NEXT is returned to with a straightforward JMP,
instruction.

Security

A reasonable number of checks are carried out on your assembly code,
but they are by no means exhaustive.

a} All parameters put on the stack in a CODE definition must
be removed before exit.

b} Address modes must be legal for the opcodes.

If an assembly error occurs ; C will not ‘'unsmudge’ the definition, so
you will not be in danger of executing a definition containing errors.

-44-

Things to beware of are the use of @= and @< which have different
meanings in the Assembler thanin FORTH,

6502 Opcodes
All the standard opcodes are supplied, in 4 groups:

— simple opcodes
— multimode opcodes {2 groups)
— branch opcodes

The multimode opcodes require an operand {on the stack), and an
address mode,

If no address mode is given, the default is Absolute address. The
assembler tries to use Zero Page mode where possible and allowable.

The address mode symbols are as follows:

A accumulator no operand

immediate 1 byte

XK indexed X Z—page or absolute address
Y indexed Y Z—page or absolute address
X) indexed indirect X Z—page address

)Y indirect indexed Y Z—page address

{) indirect absolute indirect

non absolute address
Examples

Here are some examples of assembler statements in FORTH, and in
“normal’”’ form. Note that the operand comes first, then an address
mode {if any) and finally the mnemonic. All words are separated by
spaces, as is normal for all FORTH source text.

FORTH NORMAL

A ASL, ASL A
1 # LDY LDY #1
TEMP X STA, STA TEMP,X
TEMP Y CMP, CMP TEMP,Y
6 X) ADC, ADC (6,X)
TABLE 1Y LDA, LDA (TABLE)Y
POINT {(y JMP, JMP (POINT)
Note: .A for accumulator, to distinguish it from the hexadecimal

number A

Accessing the Stacks

The data stack is on Zero Page from locations $9E down to $20.
($ means HEX addresses).

45-

Items on this stack are 16 bit quantities, placed in the normal 6502 way
with the low byte at the lower address, followed by the high byte. This
allows the use of the (#,X) address mode to access memory when the
number on the stack is an address. X is the stack pointer, which always
indicates the current bottom of stack. Decrementing X twice makes
room for a new stack item, incrementing twice will ‘remove’ one. This
allows use of n,X mode to access the stack, and {n, X} to use the stack
as a pointer.

ZERO PAGE
address
hi byte 3,X
low byte 2,X
hi byte 1,X
X'=$— low byte @,X
| next free byte :
: on stack :
r-————————= -
' |
$oged - — —_— _

For example, to add the two bottom stack items together (see also
stack diagram):

cLC :
@ X LDA ;
2 X ADC ; add two LS bytes
2 X STA, ; & store answer
1 ,X LDA ;
3 X ADC, : add MS bytes
3 ,X STA, ; & store answer
POP JMP ; exit losing old top of stack

The return stack (in Page 1) grows down from $1FE, The 6502 register
{S) points to the next free location, and addresses are pushed onto the
stack in the same order as above. To access an arbitrary byte on the
return stack, the current return stack pointer must be brought into X,
so X must be saved first.

ie.: XSAVE STX, (save it)
TSX, {get SP)

at this point; 101 X LDA, {101 isin HEX)
will get the most recent item shoved onto the machine return stack.

46-

102 ,X LDA, will get the next byte up etc,

Return Stack
| I _llbite_ —— —— } second item
low byte
_____ n |_h1te__ — — - § bottom item
low byte) $101 X
S=% Next free byte

FORTH registers

There are several FORTH ‘registers’. For the 6502, these are special
zero page locations which are are available only at assembly code levell

They all have names, which when used in the assembler, return the
appropriate address.

IP = Interpretive Pointer, This is FORTHs program counter,
and points to the next FORTH address to be interpreted
by NEXT.

w = Address of the pointer to the code field of the dictionary

definition just interpreted by NEXT. W—1 contains $6C
— the indirect jump opcode.

JMP W-—-1 thus performs an indirect jump on a code
field to the machine code for the definition.

UP User Pointer. Contains the base address of the User Area.
N A scratchpad area of 9 bytes from N—1 to N+7,

XSAVE Byte buffer in which to save the X register.

CPU Registers

When FORTH executes NEXT and enters a machine code routine, the
following conditions apply:

1. The Y index is @ and may be used freely,

2, The X index points to the low byte of the bottom item on
the data stack (relative to $100).

47-

3. The stack pointer ‘S’ points to the next free byte in the
return stack.

4, The accumulator contents are undefined, and ACC may be
used freely.

5. The processor is in binary mode with interrupts enabled,
and expects to return in that state.

The ‘N’ Workspace

When extra ‘registers’ are required, the ‘N’ area may be used for data
storage or as pointers, for example. The assembler word ‘N’ returns a
Zero Page address. Conventionally, N—1 holds a byte count, and N,
N+2, N+4, N+6 are four pairs which may hold 16 bit values. Routine
‘SETUP’ is provided to move values to the ‘N’ area. It is important
to note that many FORTH procedures use N, which can only hoid
values within a single definition, NEVER expect a value to remain in N
if you leave one definition and enter another!

Example: CODE TEST—-PORT

6 # LDA, N1 — STA, (set a counter at N-—1)
BEGIN, PORT BIT, {check an address)
N 1 — DEC, (count decrement)

@= UNTIL, NEXT JMP, ; C (loop till count of Zero)
'SETUP"

If you need to move stack values to the N area, SETUP is a subroutine
provided for this. On entering SETUP, the accumulator contains the
number of 16-bit items to be moved, so A can only be 1,2,3 or 4,

eg. 3 # LDA, SETUP JSR,

Stack before N after Stack after
H H
G L Bottom G

F F
E F
D D
C C
B B
Bottom A N A
(N—-1) 3

Control Flow and Loops

This FORTH assembler allows you to use either branch instructions and
labelled statements, or the use of ‘pseudo-control’ instructions (macro
instructions}. The latter approach is preferred, as it will result in better
structure of your code,

-48-

Method 1: Labels may be declared by the pseudo operation LABEL —
for example:

LABEL FRED @ # LDA, FRED BEQ,

Is an infinite loop. The symbol FRED is entered in a small symbol
table, as a name and the current assembly address. The later use of
FRED pushes this address to the stack. If you overflow the symbol
tabie, all hell will break loose!

During debugging, the symbol table may be cleared (wholly or partiaily)
by the KILL xxx instruction, which operates like FORGET xxx
within the symbol table,

Method 2: All the FORTH high level control words {except DO.....
LOOP) are replicated in the assembler [F, ELSE, ENDIF, BEGIN,
UNTIL, AGAIN, WHILE, REPEAT, and are used in the same
VTE: LY

EXCEPT for |IF, WHILE, UNTIL,. The high level versions test a
truth value on top of the stack. The assembler versions test a bit in the
6502 processor status word (PSW). You must specify which ‘bit’ to
test. The available ones are as follows:

CS test carry set C=1
VS test overflow set V=1
<< test negative set N=1
@ = test zero set Z=1
CS NOT test carry clear C=4d
VS NOT test overflow clear V=0
B< NOT test negative clear N={
@= NOT test zero clear Z=0
For example:

PORT LDA, 0= IF, <a.> ENDIF,
reads 'PORT’ and executes <a >>if equal to zero (Z = 1).

PORT LDA, @#= NOTIF, <a> ELSE, ENDIF,
reads '‘PORT’ and executes < a > if non-zero, else .

Similarly for loops:

6 # LDY, BEGIN, PORT DEC, DEY, @ = UNTIL,
will decrement port until Y reaches @.

6 # LDY, BEGIN, DEY, 0= NOT WHILE, PORT DEC,
REPEAT, is similar.

NOTE A ELSE, AGAIN, REPEAT, manufacture an unconditional
branch by compiling the code CLV, label BVC, so you can't use these if
you are manipulating the processor V bit yourself. The alternative is to
rewrite the macro’s to use JMP instead.

NOTE B Out of range branch offsets ARE NOT TRAPPED in this
version,

49-

ASSEMBLER GLOSSARY

Primitives

$MB

Constant for storage of a mode byte for the instruction being
assembled.

$MM Constant for storage of addressing mode mask.

$GM

$GB

$1M
$AZ

$CA

$sD
$CC

$ME
$PT

$Cm

$DC

—~—— nl returns that part of SMB
relating to addressing mode.

——— nl returns that part of SMB
which indicates @,1 or 2 addi-
tional bytes to be compiled.

n Ny —— stores n,nzintu SMB & SMM

——— converts SMB from an Abso-
lute to a Zero Page mode
byte.

addr ——— addr t/f returns ‘true’ if ‘addr’ is
in Zero Page.
Sets default values (for Absolute address) into SMB and SMM.
(nl} bytes final — Compiles the opcode and op-
opcode tional 1 or 2 byte arguement
into place.
Error exit for an illegal addressing mode,
(nl} bare —_ gets the relevant arguments,
opcode completes the opcode, and
calls SCC.
address ——— checks the current instruc-
mode tion addressing mode for
legality, exits via SME if il-
legal.

—_——— converts an Absolute address
mode to Zero Page if possible

Definning Words

$M
$IM

$BR

Defines an addressing mode type.

Defines an implied (no argument) opcode type, and compiles the
opcodes,

Defines a ‘branch’ opcode type, and effects compilation with a
computed offset. (No range check).

M1 Defines a type 1 opcode/mnemonic and effects the compila-
tion.

M2 Defines a type 2 opcode/mnemonic and effects the compila-
tion.

System Constants

EQU Shortform redefinition of ‘CONSTANT",
CS B=@<< VS Define branch opcodes as constants.

XSAVE
N

IP , Are the FORTH registers . addresses.
W
upP .

NEXT PUSH POP
SETUP PUSHBA POPTWO PUT

Pseudo-control Constructs

Exit paths etc.

NOT br-op ——— br-op inverts the sense of a branch opcode.
o VS NOT is equivalent to VC

9. @= NOT is equivalent to @ 7
IF + conditione.g.® = IF, PHA,
*ELSE
ENDIF,
BEGIN,
UNTIL, + condition e.g. @ < UNTIL,
*AGAIN,

WHILE, + condition e.g. CS WHILE,
*REPEAT,

These pseudo structures may be used to form loops etc., just as the
high level versions do.

*

These simulate an unconditional branch with the combina-
tion CLV, BVC label.

LABEL adds a label to the assembler
“symbol’ table e.g.

LABEL FRED PHA, FRED BEQ,

KILL FRED removes all labels back to and
including ‘FRED’ from the
"symbol”’ table.

Message 'SYM ERR"” if ‘FRED’
exists but is not in the table.

5H1-

Additions to the FORTH Vocabulary

CODE — Defines the start of an
assembly code procedure
e.g. CODE TEST1.

:C s Ends a CODE procedure or
;:CODE

so CODE....... ,C -
. form a pair like

The assembler also patches the ;CODE procedure in FORTH to point
into the assembler.

-592-

Glossary Overview

The Glossary of instructions is divided into functional groups, each of
which we shall briefly discuss below, Please ensure you are familiar
with the first page, showing the layout of each entry, and the symbols
for various types of parameter.

11

Single Precision Arithmetic Operators

These should be self-explanatory; note, however that there are
various combination operators, and three logical operators {(AND,
OR, XOR) included here.

Double Precision

Working on 32 bit integers.

Mixed Precision

i.e. some operands are 16 bit, some 32 bit.
Bases

Self-explanatory.

Comparison

These operators return a boolean truth flag, Note that while false
= @, true is defined as non zero, Often true = 1, but this is nota
general rule.

Stack Operators

These aflow you to move around the top few stack items. Note
that R and | have the same effect, but by convention, | is reserved
for use within a DO LOOP to indicate that it returns the
current loop counter value,

Memory Operators

These allow you to manipulate memory locations directly. Note
the different operators for byte and word memory access.

Terminal 1/O

This is possibly the least satisfactory area of FORTH. Just about
all the necessary functions are available but they are all done by
separate Words.

Note that 'EXPECT’ is a generalised text input word, and " xxx"’
is the literal string output operator,

Character strings in FORTH are stored with a one byte character
count at the start {so max length = 255 chars). To print a string
knowing its start address, COUNT fetches the ‘count’ byte to
the stack and adjusts the address ready for TYPE.

UPPER is in the dictionary, but has been left ‘disconnected’.

9.

10.

11.

12,

13

14.

15.

16.

17,

1/0 Formatting

These commands chiefly are used to turn numbers into strings of
printing characters, but with much more flexibility (See example
in chapter 3).

‘Disc’ 1/0
These should be reasonably clear.
Printing

These commands view sections of the ‘disc” — see also the PRINT
UTILITY.

Vocabularies

Control Structures

The hi-level constructs available.
Defining Words

This is the class of words which allows you to add Words to the
dictionary. * : ' has already been described; CONSTANT,
VARIABLE and USER allow the definition of name constants and

variables.

CREATE is the primitive which generates a dictionary header with
a given name. It can be used directly.

The ‘defining words’ can be considered as ‘compiler instructions’
i.e. They tell the FORTH compiler to compile a particular type of
Word. One of the great powers of FORTH is that you can add
defining words of your own, using combinations of <BUILDS
DOES>, {: :CODE} and {<BUILDS :CODE}.

Dictionary Operators

This group of words carries out operations on the dictionary
structure, and on the various fields within a dictionary entry.

System Commands
Perform various initialisation routines.
System Primitives

Various machine code primitives. You should never need to invoke
these directly.

.54-

FORTH INSTRUCTION SUMMARY

Arithmetic and integer symbols:

n = signed 16 bit integer

u = unsigned ditto

d = signed 32 bit integer
ud = unsigned ditto

Other symbols ¢ = ascii character hi 9 bits = §}
b = byte hi 8 bits=0
t/f boolean flag: @ = false
addr = address (16 bit)

P means this operation is IMMEDIATE i.e. it will ALWAYS execute,

even if FORTH is in compile mode.
E means this operation is available for EXECUTION only.
C means this operation is available for COMPILATION only,

All FORTH operations deal with 16 or 32 bit numbers on the parameter
stack, taking input values and returning their results. Byte or ASCII
characters are handled as 16 bit numbers with the unused high bits set

to zero.
LAYOUT OF GLOSSARY

NAME INPUTS STACK RESULTS DESCRIPTION
+ nl n2 ———— n3 addition
thisisthe these are the input this is the output
name values required for vaiue returned to
of the the operation. The the stack, The
operation right-most item is right-most item is
the TOP OF THE the TOP OF THE
STACK. STACK.
INPUTS OQUTPUTS

So this entry is called + It requires two input quantities which are
destroyed by the operation, It returns one output quantity — the
signed sum of the inputs.

SINGLE PRECISION ARITHMETIC OPERATORS

+ nl n2 ——— n3 n3=n1+n2
— nf n2Z —— n3 n3=n1-—n2
¥ nl n2 ——— n3 n3=n1*n2
/ ntT n2 ——— n3 n3=n1/n2 truncated
*/ nt n2 n3 ——— nd nd=n1%*n2/n3
31 bit intermediate product

/MOD n1 n2 ——— rem quot n1/n2

MOD n1 n2 ——— rem remainder of n1/n2

I.e. modulo n2 divide

-hh-

*MOD nl1 n2 n3 ——— nd4lr) nblq) as ™/

MINUS nl —— -—ni change sign

MAX nt n2 —— n3 n3 is greater of two

MIN ntl nZ —— n3 n3 is lesser of the two

ABS n —— u leave absolute value

+— ni n2 ——— n3 apply sign of n2 to n1
leave result as n3

S—>D n —— d sign extend

1+ nl ——— nl+1l increment

2+ nl ——— ni+2 add 2 to integer

AND nl n2 ——— n3 bitwise and

OR nl n2 ——— n3 bitwise or

XOR nl n2 —— n3 bitwise xor

DOUBLE PRECISION OPERATORS

D+ dl d2 ——— d3 d3=d1+d2

D+— di n —— d2 as +— on double number

DABS d —— ud as ABSondouble number

DMINUS d — d change sign of double

MIXED PRECISION OPERATORS

u/ udl ul ——— u2{r} u3{q) unsigned divide

u* ul u2 ——— ud3 unsigned multiply

M/ dl n1 ——— n2{r) n3{q) signed divide

M* nt n2 ——— di signed multiply

M/MOD udl u2 ——— u3{r}) ud4(q) unsigned divide

NUMBER BASES

HEX set number base to 16

DECIMAL set number base to 10

COMPARISION OPERATORS

< n ——— tff leaves true if n negative

@= n —— tff true if n zero (reverses
truth value)

- nl n2 —— tff true if n1>n2

< nl n2 ——— tff true if n1<n2

u< ul u2 ——— tff unsigned true if u1<u2

= nl n2 ——— tff true if n1=n2

STACK OPERATORS

ROT ntl n2 n3 —— n2 n3 nl bring third to top

DUP nt ——— n1 nl duplicate top of stack

SWAP nl n2 —— n2 nl swap top two items

DROP nt ——— remove top item

OVER nl n2 ——— nl1 n2 n1 duplicates second onto top

PICK nl —— n2 fetches n2, which is the
n1"th entry down on the
stack

-586-

—DUP nl ——— nl
ntl ——— n1 nl

R —— N
| ——=—Cn
>R n ———=C
R> SE—
SP@ ——— addr
ICSP

compile time checks
MEMORY OPERATORS

CMOVE from to count ———
? addr

BLANKS addr count

ERASE addr count ———
FILL addr count b ———
C! b addr ———
! n addr S
c@ addr —— b
@ addr —_——— N
+ n addr ———
TERMINAL 1/O

n _———
R nl n2 ———
D. d = ———
D.R d n ——
SPACES I
WORD c ———

57-

if n1—@

duplicate if non zero

copy top of return stack to
parameter stack

same as R

Puts top of stack onto return
stack.

removes top of return stack to
parameter stack

leaves address of top of stack
{before this item was added)

{compiler use only) saves stack position in variable CSP for

move count bytes; starting at
‘from” upwards

print on terminal contents of
‘addr’ as signed integer

fill memory with ‘count’ spaces
starting at ‘addr’

fill memory with ‘count’ zero's
fill memory from’‘addr’ with
‘count’ bytes ‘b"-

store byte at addr

store word at addr

fetch byte from addr

fetch word from addr

add n to location addr

print n as signed single integer
with a trailing blank

print n1 right justified in field
width n2

print signed double integer

print d right justified in field
width n

print n spaces on terminal
read input stream until the first
non-delimiter character {c is the
selected delimiter) is found.
Transfer the character string that
follows to HERE until the next
delimiter is located. The first
byte of the packed string at
HERE is the length byte,

QUERY

EXPECT addr count

rF

COUNT addr1

SPACE

CR

7TERMINAL

KEY

EMIT c

TYPE addr count

MESSAGE n

.LINE line SCI

i

1. addr

DIGIT ¢ ni
C ni

t/f

nZ
true

false

input 8@ chars (or until CR) to
TiB. At exit from QUERY,
IN=0

read chars from terminal storing
at ‘addr’ upwards until CR
received, or ‘count’ expired. A
Null character (@) is added to
the end of the string

compiles in line string terminated
by ’* executes immediately out-
side a definition.

for a string at addr1 with first
byte set to string length: returns
length n and start. Use before a
TYPE to get length byte out.
print one space

print CR

tests for ‘break’ (ctrl C) from
terminal leaves true if break
received, else false. 7TERMINAL
does not wait for a key, it in-
spects the input buffer to see
what the last char was.

returns next char received from
terminal. KEY waits for a key to
be pressed.

sends ¢ to terminal.

transmit a string of count chars
starting at addr upwards to the
terminal device.

print error message n to terminal
if variable ‘'WARNING' = @ will
print ‘n’ only,

print on terminai; line no ‘line’
of screen ser’ .

accept comment terminated by)
space after (required

print definition name from name
field address on the stack

convert char ¢ to binary n2 using
current BASE n1
if conversion invalid

I/O FORMATTING

#S df ——— d2
dl —— d2
SIGN n d ——— d ,

<# start numeric output conversion

e.g. <# #S SIGN #>.

H> d ——— addr count
NUMBER addr —_—d

HOLD c ———

PAD ——— addr
—~TRAILING addr1 n1 ——— addr2 n2

convert d1 to ascii in
output buffer, by re-
peated calls to # until
d2 is zero. Use between
<# and #> . Conversion
proceeds fromleastsignifi-
cant end of d1. From d1,
generate the next ascii
char to output string. d2
is quotient after division
by 'BASE’.

if n negative, stores ascii
minus sign in output
buffer before a numeric
output string. Use be-

tween <#H and >

resulting string stored at
PAD downwards.
terminate numeric con-
version leaving suitable
parameter for ‘TYPE' .
convert ascii string at
addr, to a signed double
number using the current
‘BASE’ . The first byte
of the string must be the
length byte.

If a decimal point is en-
countered, its position is
returned in DPL. If DPL
= —1, no decimal point
was found. This allows
you to identify 32 bit
input by puttinga ‘.’
in the number.

insert ascii char into
numeric output string.
Use between <# and #>
only.

returns start address of
temporary text buffer.
adjusts count n1 of string
to suppress any trailing
spaces in the string.

DISC I/O

LOAD n —— begin interpretation of
screen n. Loading will
terminate at end of screen

orat {;S}.

—> ———P continue interpreting
with next screen.

BLOCK n ——— addr leaves memory address

of the buffer containing
disc block n. The block
will be fetched from disc
if not already resident.
BLOCK incorporates the
OFFSET adjustment.

BUFFER n ——— addr get next buffer to use
and assign to block n. If
marked as updated, con-
tents are first rewritten
to disc. addr is first data
cell. BUFFER does NOT
incorporate the OFFSET
adjustment.

DR@

DR1

DR2

DR3 installation dependent commands to preset variable OFFSET

to allow for drive selection.,

EMPTY—-BUFFERS mark all buffers as empty. Updated buffers are
not written to disc. Used as initialisation pro-
cedure.

FLUSH force all updated buffers to be written to disc.

UPDATE mark the most recently used disc buffer (pointed to by

PREV) as updated.

+BUF addr ——— addr2 t/f advance to next disc buffer
addr2, tff is false if addr2
points to same buffer as
PREV

.LINE line scr ——— see under TERMINAL 1/0
disc primitive to transfer
block number ‘blk’ at
address ‘addr’ to (flg=0) or
from (=1} disc NOTE "blk’
is a FORTH 1kbyte block.

PREV ——— addr system variable contains
address of disc buffer
most recently referenced.

-60-

USE

B/SCR

B/BUF

LIMIT

FIRST

PRINTING
TRIAD

LIST

INDEX from to

VOCABULARIES
VLIST

DEFINITIONS

FORTH
VOCABULARY

CURRENT

CONTEXT

——— addr systern variable contains
addr of next buffer to be
used {the one |east recently

accessed).

— N constantwhichcontains the
number of disc buffers per
1024 byte screen,

—— N constant which contains

the number of bytes per
buffer {also disc sector size)

—— 1 constant address of top-of
-disc-buffers +1.
— N constant leaves address of

first disc buffer,

n -——— displays the three screens
including screen n starting
with a screen evenly
divisible by 3.

n ——-— display screen n, variable
SCR will hold n,

—_— print the first line of each
screen in the given range,
Use to view the comment
lines.

list all definition names in CONTEXT vocabulary.
(CONTEXT vocabulary is the one which is searched
first i.e. it is the EXECUTION vocabulary).

used in form cccc DEFINITIONS to set CURRENT
equal to CONTEXT. Executing cccc made it
CONTEXT and DEFINITIONS forces CURRENT
to equal CONTEXT. (CURRENT is the vocabulary
to which new Words are added).

——P sets CONTEXT vocabulary
to be FORTH.

used in form VOCABULARY cccc to create a
vocabulary definition cccc. Subsequent use of ccec
makes it the CONTEXT vocabulary, VOCABULARY
definitions should be declared IMMEDIATE.

——— addr user variable leaves addr of
pointer to first item in
current vocabulary.

——— addr user variable leaves addr of
pointer to top of context
vocabulary (searched first}

-61-

CONTROL STRUCTURES

|F t/f ———PC run time
ELSE ———PC
ENDIF ———PC

the above form the conditional execution structures:

IF {true part)ENDIF

|F {true part} ELSE (false part)ENDIF

selection of true or false part is made from top-of-stack
boolean as shown for IF {run time).

DO nl nZ ———PC run time

LOOP ——=PC run time
note that the DO.....LOOP
parameters are stored on
the return stack during
execution of the LOOP,

+LO0OP n1 ——PC run time

The above three form a looping construct which tests for
exit/continue at the bottom of the loop:

DO.....LOOP at run time ‘DO’ need variables n1 (loop limit)
and n2 (initial index value).

LOOP increments the index by 1 and if the result is <the
limit n1 the loop is re-entered at the top.

DO....n1 +LOOP as above except the top-of-stack signed
value n1 is added to the loop index. n1 must be on the stack
each time through the loop. The branch back to the DO takes
place until the new index is >= the limit {if n1 >= @) or until
the new index is <= the limit for n1 <0.

LEAVE ———C force termination of a
DO.....LOOP by setting the
loop limit equal to the
index.

! ——=Cn used within a DO.....LOOP
to copy the loop index to
the stack {see R also).

The next 6 instructions provide the more general form of looping
construct.

BEGIN ———P marks the start of a loop.

WHILE t/f ——PC conditional exit point. false
forces loop exit.

REPEAT ——PC loop terminator after
WHILE

UNTIL t/f ——PC loop teminator which exits

if true, else loops.

-B52-

AGAIN ———PC loop terminator uncondi-
tionally loops to BEGIN
BACK addr ——— compiler only. Compiles a
backward branch offset.

The following loops may be constructed:

BEGIN.....UNTIL loop is executed until a
true flag is top of stack at
UNTIL i.e. i6op UNTIL
true

BEGIN....WHILE.....REPEAT boolean is tested by
WHILE and exits from
loop if false. i.e. WHILE
true, continue loop.

BEGIN.....AGAIN uncondition loop

DEFINING WORDS

———PE begin colon definition of
new procedure creating a
new dictionary header and
setting ‘compile’ mode.

; ———PC terminate colon definition
as a high level ‘'word’ and
terminate ‘compile’ mode.
Compiles the run-time ;S
into the dictionary.

;CODE ———PC terminate colon definition
as defining word with
machine code execution
code following.

the sequence : FRED......; compiles a dictionary entry named
FRED whose CFA points to the routine
which executes a sub-routine-like func-
tion and leaves the address interpreter
pointing to the first'word’ in ‘FRED’'s PF

the sequence : JIM. . ;CODE code compiles a new defining
word JIM. When ‘JIM’ isexecuted in the
form JIM JACK a dictionary entry JACK
is created whose CFA points to the
machine language routine ‘code’ defined
IN JIM’,
N.B. :CODE REQUIRES AN ASSEMBLER TO COMPILE THE CODE
PAHT 4 % XN %

63-

CONSTANT n ——
Use in form n CONSTANT MARY to compile a dictionary
entry 'MARY’ whose PFA contains the constant value n. The
CFA points to a routine to push the value ‘n’ onto the stack
when "MARY' is executed.

VARIABLE n ———E
Use in the form n VARIABLE MICK to compile a dictionary
entry ‘MICK’ whose PFA contains the variable n. The CFA
points to the routine to push the PFA onto the stack when
'MICK" is executed.

USER n ——=
Use to create an entry in the user area. n USER FLOB
generates a dictionary entry ‘FLOB’ . Its PFA contains the
value n which is the offset into the user area for this entry,
When ‘FLOB' executed it pushes the actual memory address
of the entry onto the stack.

VOCABULARY T =
USE as VOCABULARY GROT IMMEDIATE to create
vocabulary definition ‘GROT’,

<BUILDS....DOES> ———C
Use within a colon definition : SPIT <BUILDS.....DOES>..:
to generate a new defining word ‘SPIT’ which ‘builds’
dictionary entries according to the <BUILDS part and whose
execution procedure is the high level instructions which follow
DOES> up to the semicolon. This is best explained by
example and trial and error!
Note that when the new Word executes, DOES> |eaves the
Parameter field address of the new Word on the stack.

CREATE e
This is the primitive which ‘creates’ a dictionary header at
‘here’ . The header is ‘smudged’ and the CFA points to the
PFA (i.e. to the address following the CFA). CREATE may
be used directly CREATE CC to generate the dictionary
header ‘CC’ . Use with caution,

DICTIONARY OPERATORS AND COMPILATION DIRECTIVES

COMPILEwhen the dictionary entry containing ‘'COMPILE’ executes,
the CFA of the word following it is compiied into the next
dictionary location.

[COMPILE] use in a definition e.g. : xxx [COMPILE] yyyy ..: forces
yyvy to be compiled when normally immediate

[immediate. Suspencs compilation state within a definition
to allow a computation to take place.

] Resumes compilation state e.g. : xxxx [some Words] more-
words

-64-

The Words between [] are executed at compile tiem. This
allows compile time setting of parameters.
IMMEDIATE mark the most recent dictionary definition as immediate.
i.e. the precedence bit is set in the header
TOGGLE addr b —— compliment contents of
‘addr’ by bit pattern ‘b’
TOGGLE is wused by
SMUDGE
SMUDGE used during a definition to toggle the smudge bit in the
definition name field used automatically by ‘:"and ' ;' etc,
A smudged Header cannot be found in a dictionary search.

LATEST ——— addr Leave the PFA of the top-
most CURRENT word

PFA nfa ——— pfa convert the nfa to the pfa
of the word

LFA pfa —— Ifa convert the given pfa to
the Ifa

CFA pfa ——— cfa convert the given pfa to
the cfa

NFA pfa ——— nfa convert the pfa to the nfa

. ———P addr used in form * FRED to

leave pfa of FRED. |If
compiling, the pfa is com-
piled as a literal
TRAVERSE addrin ——— addrl traverse acress a name
field header n=direction.
(1 = low to high address,
—1 = high to low addrs

ID. nfa ——— print the definitions name
from the nfa
—~FIND ——— pfabtrue if found, b=byte count of
name
——— false if not found

—FIND accepts next text word in input stream {delimited by blanks)
and tries to find a match in the dictionary.

ALLOT n ——— reserve dictionary space
for n bytes by adding n to
the dictionary pointer

, n ——— store n in the next avail-
able dictionary cell and
increment the dictionary
pointer. {comma)

C, b ——— as for {,} except does
single byte

LITERAL n ———PC compile n as 16 bit literal
value

DLITERAL d ———P compile a 32 bit literal

-65-

At execution time, LITERAL an DLITERAL will push the stored
value onto the stack.

HERE ——— addr returns address of next

available dictionary cell

pointed to by variable DP

S Stop interpretation of a disc screen, {;S} is also the run time
routine compiled by {;}

—> Continue interpreting on next disc screen

SYSTEM COMMANDS

FORGET Use in form FORGET FRED . Deletes definition FRED
and all following definitions from dictionary
+ORIGIN n ———addr for offset n into origin
memory area leave actual
memory address

RP! Initialise return stack pointer

SPI Initialise parameter stack pointer

QUIT clear return stack, stop compiling and return to terminal
input state

ABORT clear both stacks, return to terminal control printing
start up greeting message

COLD Cold start procedure, initialises stacks, user variables
dictionary pointer and restarts via ABORT

EXECUTE addr ——— execute definition whose

CFA is on stack
INTERPRET the outer text interpreter which compiles or executes
the input stream (terminal or disc depending on STATE)

SYSTEM PRIMITIVES

(LINE) nl n2 ——— addrcount convertline n1 of screen
n2 to appropriate buffer
address and char count,
(64 max)

{ABORT) actual abort procedure. Will also execute after an

ERROR if WARNING is -1,

(NUMBER} d1 addrl——— d2 addr2 convert ascii string at
addr1+1 to double
number d1, finally left as
d2. Addr2 is first uncon-
vertible character

(.") The run time proczdure compiled by .”’
(FIND} addril addr2 —— pfa b trueif found
addr1 addr2 ——— false not found

(FIND) searches the dictionary starting with a NFA at
addr2 matching to text at addri

(DO) Run time procedure compiled by DO
(LOOP) ditto for LOOP. The next word compiled is the branch
offset

-B6-

{(+LOOP) ditto for +LOOP

@BRANCH run time procedure for conditional branch, with follow-
ing branch offset

BRANCH ditto for unconditional branch

CLIT run time procedure to push a character literal to the stack
LIT ditto for word literal
ENCLOSE addric ——— addri1 n? n2 n3 text scanning

primitive used by WORD. Enclose reads-the input
stream from addr1 upwards, looking for delimiter ‘c’.
Initial occurrences of ‘c’ are ignored. When a non-de-
limiter is found, it then searches for the next occurrence
of ‘c’ after the intervening text string, and then exits
leaving offset n1 from addrl to the first non-delimiter
offset n2 from addr 1 to the first delimiter after thestring.
offset n3 from addr1 to the first char not included in
the search.

Note Ascii NULL (@)} is treated as an unconditional
delimiter if encountered in the search.

(;CODE) run time procedure compiled by {;CODE}

ERROR PROCEDURES

ERROR n ——— in blk execute error notification
of error n and restart system
leaving in and blk,

If WARNING =@, numbered error messages are produced.
If WARNING =1, message text is taken from screens 4
and b of drive @.

If WARNING = —1, the system ABORTS.

?ERROR t/f n —— issue error n if flag true.

?STACK issue error message if stack out of bounds

7EXEC ditto if not executing

?COMP ditto if not compiling

?PAIRS nl n2 ——— issue error if n1 not equal to
n2 is used to indicate paired
conditionals

2CSP issue error if stack position is not same as that stored

in CSP

?LOADING issue error if not loading

NAMED CONSTANTS

B/SCR returns number of disc sectors (blocks) per edit screen (1k)

B/BUF returns bytes per disc sector

LIMIT returns memory addr+1 above disc buftfers

FIRST returns memory addr of first disc buffer

C/L number of characters per line {64 decimal)

BL returns ascii for ‘space’

3 three

2 two

-B7-

1
¢

one
zero these are used such a lot they are constants

NAMED VARIABLES

USE
PREV

holds address of next d'sc buffer to be used
holds address of most recently referenced disc buffer

USER VARIABLES

TIB
WIDTH

WARNING
FENCE
DP
VOC-LINK

BLK

IN
ouT

SCR
OFFSET
CONTEXT
CURRENT
STATE
BASE

DPL

FLD
CSP

R#
HLD

holds address of terminal input buffer

contains max width currently allowed in name field.
(max is 31 decimal)

controls disc messages

address below which FORGETting is trapped

contains address of next cell in dictionary

contains address of a field in most recent vocabulary
structure,

contains current block number. @ means take input from
TIB

offset pointer into input text, Used mainly by WORD
count of chars output to terminal. Use for formatting.
Is reset to @ when CR or FF is output to terminal.
contains screen number last used by LIST.

points to different disc drives as a block offset.

pointer to top of context vocabulary.

pointer to vocabulary into which new definitions will go.
compilation state. non zero = >compiling.

current number base

after input number conversion, contains number of digits
to right of a decimal point if no decimal point is input,
DPL = -1

for control of output number field width. Not imple-
mented in fig—FORTH

used by compiler to store stack position

for use by editor as cursor position offset

holds address of latest character during output number

conversion

EDITOR COMMANDS
SELECTING A SCREEN FOR EDITING

EDITOR n LIST<CR >
EDITOR n CLEAR <CR >

lists screen n and selects it for editing
clears screen n and selects it

TEXT INPUT COMMANDS

P

Puts following text on line n
eg. 3 P THIS TEXT ON LINE
3<CR >

n o

-68-

NEW n _— selects and displays line n for
insertion, CR terminates and
selects next line. Existing lines
overwritten,

UNDER n —_— selects line n+1 for insertion of text
original flines n+1 onwards are
moved down. Line 15 is lost.

EDIT CURSOR CONTROL

TOP places edit cursor at beginning of text screen
M n — Move edit cursor by signed displace-
ment n New cursor line is displayed

LINE MANIPULATION

H n —_— hold line n in buffer PAD
D n —— Delete line n but save in PAD lines
n+1l to 15 move up, 15 blanked
T n — Type line n and save in PAD
R n —— replace line n with the text in PAD
l n —— Insert text from PAD to line n,
moving old lines nto 14 downwards.
E n —_— Erase line n to spaces
S n —_— Lines n to 14 move down, leaving
n blank.

STRING COMMANDS

F text <<CR > search forward from cursor position for string ‘text’.
The cursor is left at the end of the string and the cursor
line displayed. ‘NOT FOUND' error given if string not
located.

B move the cursor back by the length of the text string
used for Finding. Use to position cursor at beginning
of text string

N Use after F to get to Next occurrence of the same string.

X text <<CR > Find and delete the string "text’

Ctext <CR > Copy the string ‘text’ into current line at the cursor

position
TILL text
<CR> Delete forward from the cursor position to the end of
string “text’
NOTE: Typing C with NO TEXT will copy a null into the

text which will cause compilation to abort later on.
SCREEN MANIPULATION

LIST see FORTH glossary
CLEAR n e clears screen n to spaces
COPY nl n2 ——— copy screen n1 TO n2

-69-

L relists current screen with
cursor line
FLUSH Use at the end of an edit session to ensure all buffers

are written out to ‘disc’,
EDITOR PRIMITIVES

NOTE: THE USE OF ‘CURSOR’ REFERS TO THE EDITOR
CURSOR NOT THE SCREEN CURSOR.

TEXT c —
LINE n ——— addr

WHERE nl1 n2 ———

#LOCATE — nl n2

HLEAD ——— addr n
H#LAG —~—— addr n
—MOVE addr n ——

—TEXT addr1 addr2 n2 —— t/f

Accept the following text to
PAD ‘¢’ is the text delimiter
convert line No. n of
current edit screen to address
of butfer containing that line
n2=block number, n1=0offset
If an error occurs while
loading from disc.

ERROR leaves nl1, n2 to
locate the fault, WHERE
prints a ’'picture’ of the
error position.

convert cursor position to
line no. n2 and offset on that
line n1

leave addr of cursor line and
offset-to-cursor n

leave cursor address and
count to end of line

move a line of text from
addr to line n of current
screen

compare two strings, length
of shorter=n string start
addresses are addri1 and
addr2 flag is true if they
match, else false

MATCH addr1 nl1 addr2 n2 ——— t/f n3 addrl=cursor address, n1=

count to end-of-line addr2=
string address, n2=string
count

MATCH searches forward from addr1 for a string match to

the string at addr2 [ength n2.

It returns true if one found, and n3=change in cursor

position

It reurns false if not found, n3=count to end-of-ine.

-70-

TLINE

FIND

BS
NULL?
ENTER
ENTER?
2DROP
2DUP
2SWAP

drop a double number
DUP a double number
SWAP two double numbers

Scans current edit line
for a match to the text
in PAD., flag returned,
cursor updated

Search forward from
cursor for match to the
text in PAD, If no

match, issue error and put
cursor at top of text
screen.

emit a backspace char.

Optional Words on Cassette Extension Screens

Option Screen 1: Screen /O

PTC yx - ——=
GTC —_——y X

CLINE y ——
INFE —_—n
PON —_—
POFF —_—
PICK n —

Puts VDU cursor on row Y, character
position X of screen.

Returns current cursor position. Puts
cursor at start of line.

Clears line y of screen.

Inputs a number from keyboard.
Route all output to printer,

Switch off printer output.

get n‘th value on stack and duplicate
on top of stack.

Option Screen:Screen 2

Random Numbers

VRND variable containing last random integer
PRND primitive to perform necessary arithmetic

RND ——— N random integer n returned
NOTE n is always positive

SAND n2 ——=n returns random integer n scaled
to lie within the range @ to n2.

RANDOMISE n ——— seeds the generator with n

Option Screen 3

1-D ARRAYS

1ARRAY Builds a one dimensional array e.g. 3
1ARRAY FRED builds an array of 3
integer cells {i.e. offset range (Jto 2)
The dimension is also stored
Executing 2 FRED then returns the
ADDRESS of element 2

1CARRAY As above but with byte cells

Also included for use when debugging is an alternative version of
TARRAY which range checks the index on execution. An error message
is then given if the index is out of range.

72-

Option Screen 4

Case Statement — Numeric Key

{(OF)
CASE
OF
ENDOF

This screen contains five Words which allow a ‘Pascal’ like
CASE statement to be compiled. A CASE statement is
similar to a multiway branch allowing 1 to N possible
choices depending on the value of the input KEY, which
for this version is an integer value.

Also included is the option to execute default code if the
KEY is not matched in‘the CASE body.

The 5 Words on this screen are:

machine code primitive compiled by OF

the opening Word of a CASE statement

tests input KEY value for equality with given value
denotes the end of an OF statement

ENDCASE denotes the end of a CASE statement

FRED

examples for use:

CASE (start a definition FRED and a CASE statement)
23 OF.ciiiriciriieenn ENDOF
T2 OF coiieivieerensinnnes ENDOF
134 OF..ccvivvrereennennn . ENDOF
DEFAULT CODE
ENDCASE

The CASE statement expects an argument on the stack
which is matched in turn to each of the numbers given, If
the match is obtained the argument is dropped, and the
code between the following OF...........ENDOF is executed,
followed by a skip to END CASE which exits. |f no match
is obtained, the ‘DEFAULT CODE’ is executed, this being
optional,

NOTE that ENDCASE always executes a DROP as its first
instruction. This must be allowed for if you put anything
into the DEFAULT CODE slot.

This CASE features compile time checks, and can be nested,
i.e. further CASE statements can be placed between OF
and ENDOF for example.

Stack organisation:

At entry to CASE N ——— n is the integer KEY
After successful match ——— after executing OF
iIf no match obtained ——— n is dropped at the start of ENDCASE

So the input KEY value is always lost, so DUP it first if you want it

later on!

73

PING
SHOOT
EXPLODE
ZAP

SOUND c p v
MUSICc on v

PLAY tnmp

Machine code primitives. Not used directly.

(CURSET)
(CURMON)
(DRAW)
(CIRCLE)
{(PATTN)
(CHAR)
{POINT)
(FILL)

CURSET x y fb ———

Option Screen 5

Sound Commands

Preset sounds,

As for Basic:
As for Basic:

As for Basic:

Option Screen 6

c=Channel
p=Period
v-Volume
=0Octave
n=Note

Function as for Basic.

t=Tone channel(s)

n=Noise channel{(s}
m=Envelope Mode
p=Envelope Period

High Resolution Graphics

Option Screen 7

High Resolution Graphics

As for Basic:

7 4.

X=X position

y=y position
fb=Foreground/Background

CURMOV xr yr fb ——— As for Basic xr=x relative
yr=y relative

DRAW xr yr fb ——— As for Basic

CIRCLE r fo ——— As for Basic r=Radius

PATTERN n ——— Asfor Basic

CHAR xs fb ——— Asfor Basic x=ASCI| value
s=Character Set

POINT xr yr ——— As for Basic I=logical value on/off

FILL b a n ——— AsforBasic b=Rows
a=character cells
n=value

Note that for out-of-range errors commands will return without exe-
cuting. To see if an out-ofrange error has occurred, read location

$2E0 (Hex) @=0K
1=Range Error

Tunesmith

This is a demonstration of Forth play a three part piece of music.
Before you read it in from cassette and compile it you will need to load
in and compile the seven extension screens,

To play the music simply enter STAINES—MORRIS <<CR >

75-

Further Information

If you would like to know more about Forth and Forth programming
we recommend that you get in touch with:—

The Forth Interest Group (UK),

24 Western Avenue,

Woodley,

Reading RG5 3BH

Membership is £7 per year,

You will also find Forth articles and features in Oric Owner magazine

which is available from:—
Tansoft Ltd.,

Unit 1,

Techno Park,

Newmarket Road,
Cambridge.

Tel: 02205 2261 {4 lines)

Tansoft Ltd
Units 1 & 2 Cambridge Techno Park,
635 Newmarket Road, Cambridge CB5 8PB

WWW. MANUELS.ABANDONWARE-FRANGCE.ORG

http://www.abandonware-manuels.org

